Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 8(11): 2777-2789, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38522092

RESUMO

ABSTRACT: Megakaryocytes (MKs), integral to platelet production, predominantly reside in the bone marrow (BM) and undergo regulated fragmentation within sinusoid vessels to release platelets into the bloodstream. Inflammatory states and infections influence MK transcription, potentially affecting platelet functionality. Notably, COVID-19 has been associated with altered platelet transcriptomes. In this study, we investigated the hypothesis that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection could affect the transcriptome of BM MKs. Using spatial transcriptomics to discriminate subpopulations of MKs based on proximity to BM sinusoids, we identified ∼19 000 genes in MKs. Machine learning techniques revealed that the transcriptome of healthy murine BM MKs exhibited minimal differences based on proximity to sinusoid vessels. Furthermore, at peak SARS-CoV-2 viremia, when the disease primarily affected the lungs, MKs were not significantly different from those from healthy mice. Conversely, a significant divergence in the MK transcriptome was observed during systemic inflammation, although SARS-CoV-2 RNA was never detected in the BM, and it was no longer detectable in the lungs. Under these conditions, the MK transcriptional landscape was enriched in pathways associated with histone modifications, MK differentiation, NETosis, and autoimmunity, which could not be explained by cell proximity to sinusoid vessels. Notably, the type I interferon signature and calprotectin (S100A8/A9) were not induced in MKs under any condition. However, inflammatory cytokines induced in the blood and lungs of COVID-19 mice were different from those found in the BM, suggesting a discriminating impact of inflammation on this specific subset of cells. Collectively, our data indicate that a new population of BM MKs may emerge through COVID-19-related pathogenesis.


Assuntos
Medula Óssea , COVID-19 , Megacariócitos , SARS-CoV-2 , Transcriptoma , COVID-19/patologia , COVID-19/virologia , COVID-19/genética , COVID-19/metabolismo , Megacariócitos/metabolismo , Megacariócitos/virologia , Animais , SARS-CoV-2/fisiologia , SARS-CoV-2/genética , Camundongos , Medula Óssea/metabolismo , Medula Óssea/patologia , Calgranulina B/metabolismo , Calgranulina B/genética , Humanos , Calgranulina A/metabolismo , Calgranulina A/genética , Modelos Animais de Doenças
2.
Arterioscler Thromb Vasc Biol ; 43(11): 2088-2098, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37675634

RESUMO

Megakaryocytes are commonly known as large, polyploid, bone marrow resident cells that contribute to hemostasis through the production of platelets. Soon after their discovery in the 19th century, megakaryocytes were described in tissue locations other than the bone marrow, specifically in the lungs and the blood circulation. However, the localization of megakaryocytes in the lungs and the contribution of lung megakaryocytes to the general platelet pool has only recently been appreciated. Moreover, the conception of megakaryocytes as uniform cells with the sole purpose of platelet production has been challenged. Here, we review the literature on megakaryocyte cell identity and location with a special focus on recent observations of megakaryocyte subpopulations identified by transcriptomic analyses.


Assuntos
Plaquetas , Megacariócitos , Medula Óssea , Células da Medula Óssea , Trombopoese/genética
3.
Arterioscler Thromb Vasc Biol ; 41(1): 87-96, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33028092

RESUMO

Extracellular vesicles (EVs) are a means of cell-to-cell communication and can facilitate the exchange of a broad array of molecules between adjacent or distant cells. Platelets are anucleate cells derived from megakaryocytes and are primarily known for their role in maintaining hemostasis and vascular integrity. Upon activation by a variety of agonists, platelets readily generate EVs, which were initially identified as procoagulant particles. However, as both platelets and their EVs are abundant in blood, the role of platelet EVs in hemostasis may be redundant. Moreover, findings have challenged the significance of platelet-derived EVs in coagulation. Looking beyond hemostasis, platelet EV cargo is incredibly diverse and can include lipids, proteins, nucleic acids, and organelles involved in numerous other biological processes. Furthermore, while platelets cannot cross tissue barriers, their EVs can enter lymph, bone marrow, and synovial fluid. This allows for the transfer of platelet-derived content to cellular recipients and organs inaccessible to platelets. This review highlights the importance of platelet-derived EVs in physiological and pathological conditions beyond hemostasis.


Assuntos
Plaquetas/metabolismo , Comunicação Celular , Micropartículas Derivadas de Células/metabolismo , Hemostasia , Ativação Plaquetária , Animais , Medula Óssea/metabolismo , Micropartículas Derivadas de Células/transplante , Humanos , Mediadores da Inflamação/sangue , Linfa/metabolismo , Líquido Sinovial/metabolismo
4.
Circ Res ; 125(1): 43-52, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31219742

RESUMO

RATIONALE: Extracellular vesicles, including microvesicles, are increasingly recognized as important mediators in cardiovascular disease. The cargo and surface proteins they carry are considered to define their biological activity, including their inflammatory properties. Monocyte to endothelial cell signaling is a prerequisite for the propagation of inflammatory responses. However, the contribution of microvesicles in this process is poorly understood. OBJECTIVE: To elucidate the mechanisms by which microvesicles derived from activated monocytic cells exert inflammatory effects on endothelial cells. METHODS AND RESULTS: LPS (lipopolysaccharide)-stimulated monocytic cells release free mitochondria and microvesicles with mitochondrial content as demonstrated by flow cytometry, quantitative polymerase chain reaction, Western Blot, and transmission electron microscopy. Using RNAseq analysis and quantitative reverse transcription-polymerase chain reaction, we demonstrated that both mitochondria directly isolated from and microvesicles released by LPS-activated monocytic cells, as well as circulating microvesicles isolated from volunteers receiving low-dose LPS-injections, induce type I IFN (interferon), and TNF (tumor necrosis factor) responses in endothelial cells. Depletion of free mitochondria significantly reduced the ability of these microvesicles to induce type I IFN and TNF-dependent genes. We identified mitochondria-associated TNFα and RNA from stressed mitochondria as major inducers of these responses. Finally, we demonstrated that the proinflammatory potential of microvesicles and directly isolated mitochondria were drastically reduced when they were derived from monocytic cells with nonrespiring mitochondria or monocytic cells cultured in the presence of pyruvate or the mitochondrial reactive oxygen species scavenger MitoTEMPO. CONCLUSIONS: Mitochondria and mitochondria embedded in microvesicles constitute a major subset of extracellular vesicles released by activated monocytes, and their proinflammatory activity on endothelial cells is determined by the activation status of their parental cells. Thus, mitochondria may represent critical intercellular mediators in cardiovascular disease and other inflammatory settings associated with type I IFN and TNF signaling.


Assuntos
Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Interferon Tipo I/biossíntese , Mitocôndrias/metabolismo , Monócitos/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Adulto , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/imunologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Lipopolissacarídeos/toxicidade , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/imunologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Adulto Jovem
5.
Cancer Chemother Pharmacol ; 80(4): 673-684, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28779264

RESUMO

PURPOSE: Small-molecule inhibitors of heat-shock protein 90 (HSP90) have been under development as chemotherapeutic agents. The adverse events reported from early clinical trials included hyponatremia. Given the limited number of patients enrolled, the number of hyponatremia incidents was remarkable and repeatedly, the event was judged as severe. Inappropriate V2 vasopressin receptor stimulation is an established cause of hyponatremia. We explored the hypothesis that HSP90 inhibition produces hypersensitivity to vasopressin by upregulating V2-receptors. METHODS: Experiments were carried out in cell culture using HEK293 cells with heterologous expression of the human V2-receptor and HELA cells with an endogenous V2-receptor complement. We tested the effect of HSP90 inhibition by three structurally unrelated compounds (alvespimycin, luminespib, radicicol) and asserted its specificity in cells depleted of cytosolic HSP90 (by RNA interference). Assays encompassed surface V2-receptor density and vasopressin-stimulated formation of cyclic AMP (cAMP). RESULTS: The results demonstrate a twofold increase in cell-surface receptor density following pre-incubation with each of the HSP90 inhibitors. The effect had a concentration-dependence consistent with the individual potencies to inhibit HSP90. Similarly, depletion of cytosolic HSP90 increased surface-receptor density and at the same time, reduced the inhibitor effect. Upregulated V2-receptors were fully functional; hence, in culture treated with an HSP90 inhibitor, addition of vasopressin resulted in higher levels of cAMP than in controls. CONCLUSION: Since formation of cAMP is the first signalling step in raising water permeability of the collecting duct epithelia, we suggest that V2-receptor upregulation generates hypersensitivity to vasopressin linking HSP90 inhibition to the development of hyponatremia.


Assuntos
AMP Cíclico/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Hiponatremia/etiologia , Receptores de Vasopressinas/genética , Vasopressinas/metabolismo , Benzoquinonas/farmacologia , Citosol/metabolismo , Células HEK293 , Proteínas de Choque Térmico HSP90/metabolismo , Células HeLa , Humanos , Isoxazóis/farmacologia , Lactamas Macrocíclicas/farmacologia , Macrolídeos/farmacologia , Interferência de RNA , Resorcinóis/farmacologia , Regulação para Cima
6.
Hepatology ; 65(4): 1181-1195, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27981604

RESUMO

Diet-related health issues such as nonalcoholic fatty liver disease and cardiovascular disorders are known to have a major inflammatory component. However, the exact pathways linking diet-induced changes (e.g., hyperlipidemia) and the ensuing inflammation have remained elusive so far. We identified biological processes related to innate immunity and oxidative stress as prime response pathways in livers of low-density lipoprotein receptor-deficient mice on a Western-type diet using RNA sequencing and in silico functional analyses of transcriptome data. The observed changes were independent of the presence of microbiota and thus indicative of a role for sterile triggers. We further show that malondialdehyde (MDA) epitopes, products of lipid peroxidation and markers for enhanced oxidative stress, are detectable in hepatic inflammation predominantly on dying cells and stimulate cytokine secretion as well as leukocyte recruitment in vitro and in vivo. MDA-induced cytokine secretion in vitro was dependent on the presence of the scavenger receptors CD36 and MSR1. Moreover, in vivo neutralization of endogenously generated MDA epitopes by intravenous injection of a specific MDA antibody results in decreased hepatic inflammation in low-density lipoprotein receptor-deficient mice on a Western-type diet. CONCLUSION: Accumulation of MDA epitopes plays a major role during diet-induced hepatic inflammation and can be ameliorated by administration of an anti-MDA antibody. (Hepatology 2017;65:1181-1195).


Assuntos
Dieta Ocidental , Epitopos/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Hipercolesterolemia/patologia , Malondialdeído/metabolismo , Análise de Variância , Animais , Biópsia por Agulha , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Epitopos/imunologia , Fígado Gorduroso/imunologia , Feminino , Hipercolesterolemia/fisiopatologia , Imunidade Inata , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Peroxidação de Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Microbiota , Estresse Oxidativo , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA