RESUMO
In this study, seven strains of Limosilactobacillus fermentum were isolated from an infant fecal sample and characterized using in vitro studies. Lactobacillus rhamnosus GG was used as a comparison because it is a well-documented commercial probiotic. The isolates were tested for attributes such as acid and phenol tolerance, bile salt hydrolase (BSH) activity, and antibiotic sensitivity. One isolate, L. fermentum FS-10, displayed enhanced cell surface hydrophobicity (> 85%) and mucin adhesion. Mucin-binding helps colonization in the gut. The immunomodulatory property of L. fermentum FS-10 was evaluated by determining the modulation of pro- and anti-inflammatory factors such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-10, and nitric oxide (NO) in human acute monocytic leukemia (THP-1) cells under inflammatory conditions induced by lipopolysaccharide (LPS). L. fermentum FS-10 potently downregulated the expression of TNF-α and nitric oxide and upregulated IL-10 levels, indicating an anti-inflammatory response. Safety assessment of the strain revealed the absence of genes for virulence factors, toxin production, and antibiotic resistance, potentiating application as a probiotic strain.
Assuntos
Limosilactobacillus fermentum , Probióticos , Lactente , Humanos , Fator de Necrose Tumoral alfa , Óxido Nítrico , Anti-Inflamatórios/farmacologia , Mucinas , Probióticos/metabolismoRESUMO
Glioblastoma (GBM) is an aggressive form of brain tumor with a median survival of approximately 12 months. With no new drugs in the last few decades and limited success in clinics for known therapies, drug repurposing is an attractive choice for its treatment. Here, we examined the efficacy of pyronaridine (PYR), an anti-malarial drug in GBM cells. PYR induced anti-proliferative activity in GBM cells with IC50 ranging from 1.16 to 6.82 µM. Synergistic activity was observed when PYR was combined with Doxorubicin and Ritonavir. Mechanistically, PYR triggered mitochondrial membrane depolarization and enhanced the ROS levels causing caspase-3 mediated apoptosis. PYR significantly decreased markers associated with proliferation, EMT, hypoxia, and stemness and upregulated the expression of E-cadherin. Interestingly, PYR induced the expression of intracellular as well as secretory Par-4, a tumor suppressor in GBM cells, which was confirmed using siRNA. Notably, Par-4 levels in plasma samples of GBM patients were significantly lower than normal healthy volunteers. Thus, our study demonstrates for the first time that PYR can be repurposed against GBM with a novel mechanism of action involving Par-4. Herewith, we discuss the role of upregulated Par-4 in a highly interconnected signaling network thereby advocating its importance as a therapeutic target.
RESUMO
Sclerotium rolfsii lectin (SRL) exerts apoptotic effect against various cancer cells and an antitumor activity on mice with colon and breast cancer xenografts. The current study aimed to explore its exquisite carbohydrate specificity on human peripheral blood mononuclear cells (PBMCs) and leukemic T-cells. SRL, showed strong binding (>98%) to resting/activated PBMCs, leukemic Molt-4 and Jurkat cell lines. The glycans mediated binding to these cells was effectively blocked by mucin and fetuin, exhibiting 97% and 94% inhibition respectively. SRL showed mitogenic stimulation of PBMCs at 10 µg/ml as determined by thymidine incorporation assay. In contrast, lectin induced a dose dependent growth inhibition of Molt-4 cells with 58% inhibition at 25 µg/ml. Many common membrane receptors in activated PBMCs, Molt 4 and Jurkat cells were identified by lectin blotting. However, membrane receptors that are recognized by SRL in normal resting PBMCs were totally different and are high molecular weight glycoproteins. Treatment of membrane receptors with glycosidases prior to lectin probing, revealed that fucosylated Thomsen-Friedenreich(TF) antigen glycans are increasingly expressed on transformed Molt-4 leukemic cells compared to other cells. The findings highlight the opposite effects of SRL on transformed and normal hematopoietic cells by recognizing different glycan-receptors. SRL has promising potential for diagnostics and therapeutic applications in leukaemia.
Assuntos
Antígenos Glicosídicos Associados a Tumores/metabolismo , Antineoplásicos/farmacologia , Basidiomycota/química , Proteínas Fúngicas/farmacologia , Lectinas/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Células Jurkat , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Monócitos/fisiologia , Ligação ProteicaRESUMO
The objective of this study was to examine the combined effect of Interferon-gamma (IFN-γ) and Tumor Necrosis factor-alpha (TNF-α) on cytotoxicity and expression of prostate apoptosis response-4 (Par-4) and Par-4 interacting proteins B-cell lymphoma (Bcl-2), nuclear factor kappa-light-chain-enhancer of activated B cells/p65 subunit (NF-κB/p65), Ak mouse strain thymoma (Akt) in human neuroblastoma (NB) cells. Materials and methods included human neuroblastoma cell lines-SK-N-MC, SK-N-SH, and SH-SY5Y, which were treated with IFN-γ and TNF-α individually, or in combination, and were assessed for viability by tetrazolium (MTT) assay. Apoptosis was monitored by hypodiploid population (by flow cytometry), DNA fragmentation, Poly (ADP-ribose) polymerase (PARP) cleavage, and caspase-8 activity. Transcript level of Par-4 was measured by RT-PCR. Protein levels of Par-4 and suppressor of cytokine signaling 3 (SOCS-3) were assessed by immunoblotting. Cellular localization of Par-4 and p65 was examined by immunofluorescence. Unbiased transcript analysis for IFN-γ, TNF-α, and Par-4 were analyzed from three independent clinical datasets from neuroblastoma patients. In terms of results, SK-N-MC cells treated with a combination of, but not individually with, IFN-γ and TNF-α induced apoptosis characterized by hypodiploidy, DNA fragmentation, PARP cleavage, and increased caspase-8 activity. Apoptosis was associated with up-regulation of Par-4 mRNA and protein expression. Immunofluorescence studies revealed that Par-4 was localized exclusively in cytoplasm in SK-N-MC cells cultured for 24 h. but showed nuclear localization at 48 h. Treatment with IFN-γ and TNF-α together enhanced the intensity of nuclear Par-4. In gene expression, data from human neuroblastoma patients, levels of IFN-γ, and TNF-α have strong synergy with Par-4 expression and provide good survival advantage. The findings also demonstrated that apoptosis was associated with reduced level of pro-survival proteins-Bcl-2 and Akt and NF-κB/p65. Furthermore, the apoptotic effect induced by IFN-γ-induced Signal Transducer and Activator of Transcription-1(STAT-1), and could be due to down-regulation of suppressor of cytokine signaling-3 (SOCS3). The study concludes that a combinatorial approach using IFN-γ and TNF-α can be explored to maximize the effect in chemotherapy in neuroblastoma, and implies a role for Par-4 in the process.
RESUMO
Glucose regulated protein 78 (GRP78) has recently been suggested to be associated with drug resistance in breast cancer patients. However, the precise role of GRP78 in drug resistance and the involved signaling pathways are not clearly understood. In the present study, we show that among a panel of drugs, namely Paclitaxel (TAX), Doxorubicin (DOX), 5-fluorouracil (5-FU), UCN-01 and Tamoxifen (TAM) used, TAM alone up-regulated the expression of GRP78 significantly and induced apoptosis in MCF-7 and MDA-MB-231 cells. Interestingly, inhibition of GRP78 by a specific pharmacological inhibitor, VER-155008 augmented TAM-induced apoptosis, and overexpression of GRP78 rendered the cells resistant to TAM-induced cell death suggesting a role for GRP78 in TAM-induced cytotoxicity. Mechanistically, the expression of phosphorylated AKT as determined by Western blot analyses revealed that TAM selectively upregulated phosphorylation of AKT at Thr308 but not at Ser473, and siRNA silencing of GRP78 resulted in inhibition of AKT phosphorylation at Thr308 but not at Ser473. Further, a GRP78 inhibitor, VER155008 inhibited TAM-induced phosphorylation of GSK3ß, a downstream substrate of AKT. These results, thus suggests a role for GRP78 in TAM-induced AKT activation. Additionally, co-localization studies by immunofluorescence, and immunoprecipitation experiments demonstrated a complex formation of AKT and GRP78. Furthermore, in glucose-free medium, the cells were sensitized to TAM-induced cell death that was associated with reduced AKT phosphorylation at Thr308, thus strengthening the association of AKT regulation with drug response. Collectively, our findings identify a role of GRP78 in AKT regulation in response to TAM in breast cancer cells.
Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Proteínas de Choque Térmico/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tamoxifeno/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Interações Medicamentosas , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Humanos , Insulina/farmacologia , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacosRESUMO
Glioblastoma (GBM), the most malignant of the brain tumors is classified on the basis of molecular signature genes using TCGA data into four subtypes- classical, mesenchymal, proneural and neural. The mesenchymal phenotype is associated with greater aggressiveness and low survival in contrast to GBMs enriched with proneural genes. The proinflammatory cytokines secreted in the microenvironment of gliomas play a key role in tumor progression. The study focused on the role of Oncostatin-M (OSM), an IL-6 family cytokine in inducing mesenchymal properties in GBM. Analysis of TCGA and REMBRANDT data revealed that expression of OSMR but not IL-6R or LIFR is upregulated in GBM and has negative correlation with survival. Amongst the GBM subtypes, OSMR level was in the order of mesenchymal > classical > neural > proneural. TCGA data and RT-PCR analysis in primary cultures of low and high grade gliomas showed a positive correlation between OSMR and mesenchymal signature genes-YKL40/CHI3L1, fibronectin and vimentin and a negative correlation with proneural signature genes-DLL3, Olig2 and BCAN. OSM enhanced transcript and protein level of fibronectin and YKL-40 and reduced the expression of Olig2 and DLL3 in GBM cells. OSM-regulated mesenchymal phenotype was associated with enhanced MMP-9 activity, increased cell migration and invasion. Importantly, OSM induced mesenchymal markers and reduced proneural genes even in primary cultures of grade-III glioma cells. We conclude that OSM-mediated signaling contributes to aggressive nature associated with mesenchymal features via STAT3 signaling in glioma cells. The data suggest that OSMR can be explored as potential target for therapeutic intervention.
Assuntos
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Células-Tronco Mesenquimais/metabolismo , Oncostatina M/fisiologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Western Blotting , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Técnica Indireta de Fluorescência para Anticorpo , Regulação da Expressão Gênica/fisiologia , Glioma/patologia , Humanos , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Receptores de Interleucina-6/genética , Receptores de Oncostatina M/genéticaRESUMO
We have previously reported that a fungal lectin, Rhizoctonia bataticola lectin (RBL), stimulates proliferation and secretion of Th1/Th2 cytokines in human peripheral blood mononuclear cells (PBMC). In the present study, we evaluated the ability of RBL to differentiate human monocytes to macrophages. RBL induced morphological changes indicative of differentiation in primary monocytes and THP-1 cells. Stimulation with RBL resulted in significant up-regulation of differentiation markers - CD54, HLA-DR, CD11b and CD11c and secretion of proinflammatory cytokines - IL-1ß, TNF-α and IL-6. Functionally, RBL profoundly increased phagocytic activity in monocytes. In THP-1 cells, RBL-induced phagocytosis was higher compared to the effect induced by combination of phorbol-12-myristate-13-acetate (PMA) and lipopolysaccharide (LPS). RBL induced a significant increase in matrix metalloproteinase-9 (MMP-9) activity in comparison with a combined treatment of PMA+LPS. Mechanistic studies revealed the involvement of the NF-κB pathway in RBL-induced differentiation of monocytes. The data suggest that RBL mimics the combined action of PMA and LPS to induce morphological and functional differentiation in human monocytes and monocytic cell line - THP-1 to macrophages. Human monocytes differentiated to macrophages with RBL have the potential as an in vitro model to study macrophage biology.
Assuntos
Lectinas/farmacologia , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Rhizoctonia/química , Ligação Competitiva , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células Cultivadas , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Lectinas/metabolismo , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Microscopia Confocal , Monócitos/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Nitrilas/farmacologia , Fagocitose/efeitos dos fármacos , Sulfonas/farmacologia , Acetato de Tetradecanoilforbol/farmacologiaRESUMO
Sclerotium rolfsii lectin (SRL) isolated from the phytopathogenic fungus Sclerotium rolfsii has exquisite binding specificity towards O-linked, Thomsen-Freidenreich (Galß1-3GalNAcα1-Ser/Thr, TF) associated glycans. This study investigated the influence of SRL on proliferation of human breast cancer cells (MCF-7 and ZR-75), non-tumorigenic breast epithelial cells (MCF-10A) and normal mammary epithelial cells (HMECs). SRL caused marked, dose-dependent, inhibition of proliferation of MCF-7 and ZR-75 cells but only weak inhibition of proliferation of non-tumorigenic MCF-10A and HMEC cells. The inhibitory effect of SRL on cancer cell proliferation was shown to be a consequence of SRL cell surface binding and subsequent induction of cellular apoptosis, an effect that was largely prevented by the presence of inhibitors against caspases -3, -8, or -9. Lectin histochemistry using biotin-labelled SRL showed little binding of SRL to normal human breast tissue but intense binding to cancerous tissues. In conclusion, SRL inhibits the growth of human breast cancer cells via induction of cell apoptosis but has substantially less effect on normal epithelial cells. As a lectin that binds specifically to a cancer-associated glycan, has potential to be developed as an anti-cancer agent.
Assuntos
Apoptose/efeitos dos fármacos , Basidiomycota/química , Neoplasias da Mama/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Lectinas/farmacologia , Glândulas Mamárias Humanas/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Lectinas/metabolismo , Ligação ProteicaRESUMO
We have previously demonstrated immunostimulatory activity of a fungal lectin, Rhizoctonia bataticola lectin (RBL), towards normal human peripheral blood mononuclear cells. The present study aimed to explore the anticancer activities of RBL using human leukemic T-cell lines, Molt-4, Jurkat and HuT-78. RBL exhibited significant binding (>90%) to the cell membrane that was effectively inhibited by complex glycoproteins such as mucin (97% inhibition) and asialofetuin (94% inhibition) but not simple sugars such as N-acetyl-D-galactosamine, glucose and sucrose. RBL induced a dose and time dependent inhibition of proliferation and induced cytotoxicity in the cell lines. The percentage of apoptotic cells, as determined by hypodiploidy, was 33% and 42% in Molt-4 and Jurkat cells, respectively, compared to 3.11% and 2.92% in controls. This effect was associated with a concomitant decrease in the G0/G1 population. Though initiator caspase-8 and -9 were activated upon exposure to RBL, inhibition of caspase-8 but not caspase-9 rescued cells from RBL-induced apoptosis. Mechanistic studies revealed that RBL induced cleavage of Bid, loss of mitochondrial membrane potential and activation of caspase-3. The expression of the anti-apoptotic proteins Bcl-2 and Bcl-X was down regulated without altering the expression of pro-apoptotic proteins--Bad and Bax. In contrast to leukemic cells, RBL did not induce apoptosis in normal PBMC, isolated CD3+ve cells and undifferentiated CD34+ve hematopoietic stem and progenitor cells (HSPCs). The findings highlight the differential effects of RBL on transformed and normal hematopoietic cells and suggest that RBL may be explored for therapeutic applications in leukemia.
Assuntos
Apoptose/efeitos dos fármacos , Caspase 8/metabolismo , Lectinas/farmacologia , Leucemia de Células T/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Rhizoctonia/química , Antígenos CD34/metabolismo , Complexo CD3/metabolismo , Metabolismo dos Carboidratos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Lectinas/metabolismo , Lectinas/toxicidade , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismoRESUMO
Sodium valproate (VPA) has been recently identified as a selective class I histone deacetylase (HDAC) inhibitor and explored for its potential as an anti-cancer agent. The anti-cancer properties of VPA are generally attributed to its HDAC inhibitory activity indicating a clear overlap of these two actions, but the underlying mechanisms of its anti-tumor effects are not clearly elucidated. The present study aimed to delineate the molecular mechanism of VPA in potentiating cytotoxic effects of anti-cancer drugs with focus on inhibition of HDAC activity. Using human neuroblastoma cell lines, SK-N-MC, SH-SY5Y, and SK-N-SH, we show that non-toxic dose (2 mM) of VPA enhanced staurosporine (STS)-induced cell death as assessed by MTT assay, PARP cleavage, hypodiploidy, and caspase 3 activity. Mechanistically, the effect of VPA was mediated by down regulation of survivin, an anti-apoptotic protein crucial in resistance to STS-mediated cytotoxicity, through Akt pathway. Knock down of class I HDAC isoforms remarkably inhibited HDAC activity comparable with that of VPA but had no effect on STS-induced apoptosis. Moreover, MS-275, a structurally distinct class I HDAC inhibitor did not affect STS-mediated apoptosis, nor decrease the levels of survivin and Akt. Valpromide (VPM), an amide analog of VPA that does not inhibit HDAC also potentiated cell death in NB cells associated with decreased survivin and Akt levels suggesting that HDAC inhibition might not be crucial for STS-induced apoptosis. The study provides new information on the possible molecular mechanism of VPA in apoptosis that can be explored in combination therapy in cancer.
Assuntos
Apoptose , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estaurosporina/farmacologia , Ácido Valproico/farmacologia , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Relação Dose-Resposta a Droga , Regulação para Baixo , Sinergismo Farmacológico , Ativação Enzimática , Pontos de Checagem da Fase G2 do Ciclo Celular , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Humanos , Proteínas Inibidoras de Apoptose/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Proteólise , Proteínas Proto-Oncogênicas c-akt/genética , Piridinas/farmacologia , Survivina , Ácido Valproico/análogos & derivadosRESUMO
2D and 3D quantitative structure-activity relationship studies have been carried out for establishing a correlation between the structural properties of benzyl urea derivatives and their anti-tumour activities. From this correlation, the new chemical entities were designed, and their activity and absorption, distribution, metabolism, excretion, and toxicity properties were also predicted. Finally, the most promising compounds from these screening were synthesized and biologically evaluated for their anti-cancer properties. Compound 1-(2, 4-dimethylphenyl)-3, 3-dimethyl-1-(2-nitrobenzyl) urea (7d) showed significant anti-proliferative activity (at 100 µg/mL) in human cancer cell lines-T-cell leukemia (Jurkat J6), myelogenous leukemia (K562), and breast cancer (MCF-7) compared to reference standard 5-flurouracil.
Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Relação Quantitativa Estrutura-Atividade , Ureia/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Valor Preditivo dos Testes , Relação Estrutura-Atividade , Ureia/análogos & derivados , Ureia/químicaRESUMO
A lectin with strong mitogenic activity towards human peripheral blood mononuclear cells (PBMCs) and cytotoxic effect on human ovarian cancer cells has been purified from the mycelium of a phytopathogenic fungus, Rhizoctonia bataticola, using ion exchange chromatography and affinity chromatography on asialofetuin-Sepharose. The lectin, termed RBL, is a tetramer of 11-kDa subunits and has unique amino acid sequence at its blocked N-terminus. The purified RBL was blood group nonspecific and its hemagglutination activity was inhibited by mucin (porcine stomach), fetuin (fetal calf serum) and asialofetuin. Glycan array analysis revealed high affinity binding of RBL towards N-glycans and also the glycoproteins containing complex N-glycan chains. Interestingly, the lectin showed high affinity for glycans which are part of ovarian cancer marker CA125, a high molecular weight mucin containing high mannose and complex bisecting type N-linked glycans as well core 1 and 2 type O-glycans. RBL bound to human PBMCs eliciting strong mitogenic response, which could be blocked by mucin, fetuin and asialofetuin demonstrating the carbohydrate-mediated interaction with the cells. Analysis of the kinetics of binding of RBL to PBMCs revealed a delayed mitogenic response indicating a different signaling pathway compared to phytohemagglutinin-L. RBL had a significant cytotoxic effect on human ovarian cancer cell line, PA-1.
Assuntos
Sobrevivência Celular/efeitos dos fármacos , Fungos/química , Lectinas/metabolismo , Lectinas/farmacologia , Micélio/química , Animais , Linhagem Celular , Linhagem Celular Tumoral , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Feminino , Citometria de Fluxo , Glicoproteínas/metabolismo , Testes de Hemaglutinação , Humanos , Concentração de Íons de Hidrogênio , Lectinas/química , Lectinas/isolamento & purificação , Peso Molecular , Neoplasias Ovarianas/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica , CoelhosRESUMO
Mesenchymal stem cells (MSCs) can be differentiated into cell types derived from all three germ layers by manipulating culture conditions in vitro. A multitude of growth and differentiation factors have been employed for driving MSCs towards a neuronal phenotype. In the present study, we investigated the potential of extracellular matrix (ECM) proteins-fibronectin, collagen-1, collagen-IV, laminin-1, and laminin-10/11, to induce a neuronal phenotype in bone marrow derived human MSCs in the absence of growth factors/differentiating agents. All of the ECM proteins tested were found to support adhesion of MSCs to different extents. However, direct interaction only with laminin-1 triggered sprouting of neurite-like processes. Cells plated on laminin-1 exhibited neurite out growth as early as 3h, and by 24h, the cells developed elaborate neurites with contracted cell bodies and neuronal-like morphology. Function-blocking antibodies directed against alpha6 and beta1 integrin subunits inhibited neurite formation on laminin-1 which confirmed the involvement of integrin alpha6beta1 in neurite outgrowth. Mechanistic studies revealed that cell adhesion to laminin-1 activated focal adhesion kinase (FAK), and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) signaling pathways. Abrogation of FAK phosphorylation by herbimycin-A inhibited neurite formation and also decreased activities of MEK and ERK. Pharmacological inhibitors of MEK (U0126) and ERK (PD98059) also blocked neurite outgrowth in cells plated on laminin-1. Our study demonstrates the involvement of integrin alpha6beta1 and FAK-MEK/ERK signaling pathways in laminin-1-induced neurite outgrowth in MSCs in the absence of serum and differentiation factors.