Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1112985, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36993954

RESUMO

Dendritic cells (DCs) are professional antigen-presenting cells (APCs) with the unique ability to mediate inflammatory responses of the immune system. Given the critical role of DCs in shaping immunity, they present an attractive avenue as a therapeutic target to program the immune system and reverse immune disease disorders. To ensure appropriate immune response, DCs utilize intricate and complex molecular and cellular interactions that converge into a seamless phenotype. Computational models open novel frontiers in research by integrating large-scale interaction to interrogate the influence of complex biological behavior across scales. The ability to model large biological networks will likely pave the way to understanding any complex system in more approachable ways. We developed a logical and predictive model of DC function that integrates the heterogeneity of DCs population, APC function, and cell-cell interaction, spanning molecular to population levels. Our logical model consists of 281 components that connect environmental stimuli with various layers of the cell compartments, including the plasma membrane, cytoplasm, and nucleus to represent the dynamic processes within and outside the DC, such as signaling pathways and cell-cell interactions. We also provided three sample use cases to apply the model in the context of studying cell dynamics and disease environments. First, we characterized the DC response to Sars-CoV-2 and influenza co-infection by in-silico experiments and analyzed the activity level of 107 molecules that play a role in this co-infection. The second example presents simulations to predict the crosstalk between DCs and T cells in a cancer microenvironment. Finally, for the third example, we used the Kyoto Encyclopedia of Genes and Genomes enrichment analysis against the model's components to identify 45 diseases and 24 molecular pathways that the DC model can address. This study presents a resource to decode the complex dynamics underlying DC-derived APC communication and provides a platform for researchers to perform in-silico experiments on human DC for vaccine design, drug discovery, and immunotherapies.


Assuntos
COVID-19 , Coinfecção , Humanos , Células Dendríticas , Coinfecção/metabolismo , COVID-19/metabolismo , SARS-CoV-2 , Imunidade
2.
Proteins ; 90(11): 1944-1964, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35620856

RESUMO

Nuclear factor kappa B (NF-κB) signaling is the master regulator of inflammatory pathways; therefore, its regulation has been the subject of investigation since last two decades. Multiple models have been published that describes the dynamics of NF-κB activity by stimulated activation and feedback loops. However, there is also paramount evidence of the critical role of posttranslational modifications (PTMs) in the regulation of NF-κB pathway. With the premise that PTMs present alternate routes for activation or repression of the NF-κB pathway, we have developed a model including all PTMs known so far describing the system behavior. We present a pathway network model consisting of 171 proteins forming 315 molecular species and consisting of 482 reactions that describe the NF-κB activity regulation in totality. The overexpression or knockdown of interacting molecular partners that regulate NF-κB transcriptional activity by PTMs is used to infer the dynamics of NF-κB activity and offers qualitative agreement between model predictions and the experimental results heuristically. Finally, we have demonstrated an instance of NF-κB constitutive activation through positive upregulation of cytokines (the stimuli) and IKK complex (NF-κB activator), the characteristic features in several cancer types and metabolic disorders, and its reversal by employing combinatorial activation of PPARG, PIAS3, and P50-homodimer. For the first time, we have presented a NF-κB model that includes transcriptional regulation by PTMs and presented a theoretical strategy for the reversal of NF-κB constitutive activation. The presented model would be important in understanding the NF-κB system, and the described method can be used for other pathways as well.


Assuntos
Quinase I-kappa B , NF-kappa B , Citocinas , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , PPAR gama , Transdução de Sinais
3.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34593646

RESUMO

Iron is an essential biometal, but is toxic if it exists in excess. Therefore, iron content is tightly regulated at cellular and systemic levels to meet metabolic demands but to avoid toxicity. We have recently reported that adaptive thermogenesis, a critical metabolic pathway to maintain whole-body energy homeostasis, is an iron-demanding process for rapid biogenesis of mitochondria. However, little information is available on iron mobilization from storage sites to thermogenic fat. This study aimed to determine the iron-regulatory network that underlies beige adipogenesis. We hypothesized that thermogenic stimulus initiates the signaling interplay between adipocyte iron demands and systemic iron liberation, resulting in iron redistribution into beige fat. To test this hypothesis, we induced reversible activation of beige adipogenesis in C57BL/6 mice by administering a ß3-adrenoreceptor agonist CL 316,243 (CL). Our results revealed that CL stimulation induced the iron-regulatory protein-mediated iron import into adipocytes, suppressed hepcidin transcription, and mobilized iron from the spleen. Mechanistically, CL stimulation induced an acute activation of hypoxia-inducible factor 2-α (HIF2-α), erythropoietin production, and splenic erythroid maturation, leading to hepcidin suppression. Disruption of systemic iron homeostasis by pharmacological HIF2-α inhibitor PT2385 or exogenous administration of hepcidin-25 significantly impaired beige fat development. Our findings suggest that securing iron availability via coordinated interplay between renal hypoxia and hepcidin down-regulation is a fundamental mechanism to activate adaptive thermogenesis. It also provides an insight into the effects of adaptive thermogenesis on systemic iron mobilization and redistribution.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hepcidinas/metabolismo , Ferro/metabolismo , Termogênese/fisiologia , Adipócitos/metabolismo , Adipócitos Bege/metabolismo , Adipogenia/fisiologia , Tecido Adiposo Bege/metabolismo , Animais , Regulação para Baixo/fisiologia , Eritropoetina/metabolismo , Homeostase/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Transdução de Sinais/fisiologia
5.
Sci Rep ; 11(1): 5585, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692493

RESUMO

Recent political unrest has highlighted the importance of understanding the short- and long-term effects of gamma-radiation exposure on human health and survivability. In this regard, effective treatment for acute radiation syndrome (ARS) is a necessity in cases of nuclear disasters. Here, we propose 20 therapeutic targets for ARS identified using a systematic approach that integrates gene coexpression networks obtained under radiation treatment in humans and mice, drug databases, disease-gene association, radiation-induced differential gene expression, and literature mining. By selecting gene targets with existing drugs, we identified potential candidates for drug repurposing. Eight of these genes (BRD4, NFKBIA, CDKN1A, TFPI, MMP9, CBR1, ZAP70, IDH3B) were confirmed through literature to have shown radioprotective effect upon perturbation. This study provided a new perspective for the treatment of ARS using systems-level gene associations integrated with multiple biological information. The identified genes might provide high confidence drug target candidates for potential drug repurposing for ARS.


Assuntos
Síndrome Aguda da Radiação , Bases de Dados de Ácidos Nucleicos , Sistemas de Liberação de Medicamentos , Redes Reguladoras de Genes , Fatores de Transcrição , Transcriptoma , Síndrome Aguda da Radiação/tratamento farmacológico , Síndrome Aguda da Radiação/genética , Síndrome Aguda da Radiação/metabolismo , Síndrome Aguda da Radiação/patologia , Animais , Reposicionamento de Medicamentos , Humanos , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Sci Rep ; 6: 23440, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-27000948

RESUMO

Robustness of metabolic networks is accomplished by gene regulation, modularity, re-routing of metabolites and plasticity. Here, we probed robustness against perturbations of biochemical reactions of M. tuberculosis in the form of predicting compensatory trends. In order to investigate the transcriptional programming of genes associated with correlated fluxes, we integrated with gene co-expression network. Knock down of the reactions NADH2r and ATPS responsible for producing the hub metabolites, and Central carbon metabolism had the highest proportion of their associated genes under transcriptional co-expression with genes of their flux correlated reactions. Reciprocal gene expression correlations were observed among compensatory routes, fresh activation of alternative routes and in the multi-copy genes of Cysteine synthase and of Phosphate transporter. Knock down of 46 reactions caused the activation of Isocitrate lyase or Malate synthase or both reactions, which are central to the persistent state of M. tuberculosis. A total of 30 new freshly activated routes including Cytochrome c oxidase, Lactate dehydrogenase, and Glycine cleavage system were predicted, which could be responsible for switching into dormant or persistent state. Thus, our integrated approach of exploring transcriptional programming of flux correlated reactions has the potential to unravel features of system architecture conferring robustness.


Assuntos
Expressão Gênica , Modelos Teóricos , Mycobacterium tuberculosis/fisiologia , Transcrição Gênica
7.
Artigo em Inglês | MEDLINE | ID: mdl-26904540

RESUMO

Dysregulation in signal transduction pathways can lead to a variety of complex disorders, including cancer. Computational approaches such as network analysis are important tools to understand system dynamics as well as to identify critical components that could be further explored as therapeutic targets. Here, we performed perturbation analysis of a large-scale signal transduction model in extracellular environments that stimulate cell death, growth, motility, and quiescence. Each of the model's components was perturbed under both loss-of-function and gain-of-function mutations. Using 1,300 simulations under both types of perturbations across various extracellular conditions, we identified the most and least influential components based on the magnitude of their influence on the rest of the system. Based on the premise that the most influential components might serve as better drug targets, we characterized them for biological functions, housekeeping genes, essential genes, and druggable proteins. The most influential components under all environmental conditions were enriched with several biological processes. The inositol pathway was found as most influential under inactivating perturbations, whereas the kinase and small lung cancer pathways were identified as the most influential under activating perturbations. The most influential components were enriched with essential genes and druggable proteins. Moreover, known cancer drug targets were also classified in influential components based on the affected components in the network. Additionally, the systemic perturbation analysis of the model revealed a network motif of most influential components which affect each other. Furthermore, our analysis predicted novel combinations of cancer drug targets with various effects on other most influential components. We found that the combinatorial perturbation consisting of PI3K inactivation and overactivation of IP3R1 can lead to increased activity levels of apoptosis-related components and tumor-suppressor genes, suggesting that this combinatorial perturbation may lead to a better target for decreasing cell proliferation and inducing apoptosis. Finally, our approach shows a potential to identify and prioritize therapeutic targets through systemic perturbation analysis of large-scale computational models of signal transduction. Although some components of the presented computational results have been validated against independent gene expression data sets, more laboratory experiments are warranted to more comprehensively validate the presented results.

8.
J Biomol Struct Dyn ; 33(1): 147-57, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24261636

RESUMO

SAP-1 is a 113 amino acid long single-chain protein which belongs to the type 2 cystatin gene family. In our previous study, we have purified SAP-1 from human seminal plasma and observed its cross-class inhibitory property. At this time, we report the interaction of SAP-1 with diverse proteases and its binding partners by CD-spectroscopic and molecular docking methods. The circular dichroism (CD) spectroscopic studies demonstrate that the conformation of SAP-1 is changed after its complexation with proteases, and the alterations in protein secondary structure are quantitatively calculated with increase of α-helices and reduction of ß-strand content. To get insight into the interactions between SAP-1 and proteases, we make an effort to model the three-dimensional structure of SAP-1 by molecular modeling and verify its stability and viability through molecular dynamics simulations and finally complexed with different proteases using ClusPro 2.0 Server. A high degree of shape complementarity is examined within the complexes, stabilized by a number of hydrogen bonds (HBs) and hydrophobic interactions. Using HB analyses in different protein complexes, we have identified a series of key residues that may be involved in the interactions between SAP-1 and proteases. These findings will assist to understand the mechanism of inhibition of SAP-1 for different proteases and provide intimation for further research.


Assuntos
Dicroísmo Circular/métodos , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Cistatinas Salivares/química , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Cistatinas Salivares/genética , Cistatinas Salivares/metabolismo , Homologia de Sequência de Aminoácidos
9.
PLoS One ; 8(12): e83336, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24376689

RESUMO

Chlorophytum borivilianum, an endangered medicinal plant species is highly recognized for its aphrodisiac properties provided by saponins present in the plant. The transcriptome information of this species is limited and only few hundred expressed sequence tags (ESTs) are available in the public databases. To gain molecular insight of this plant, high throughput transcriptome sequencing of leaf RNA was carried out using Illumina's HiSeq 2000 sequencing platform. A total of 22,161,444 single end reads were retrieved after quality filtering. Available (e.g., De-Bruijn/Eulerian graph) and in-house developed bioinformatics tools were used for assembly and annotation of transcriptome. A total of 101,141 assembled transcripts were obtained, with coverage size of 22.42 Mb and average length of 221 bp. Guanine-cytosine (GC) content was found to be 44%. Bioinformatics analysis, using non-redundant proteins, gene ontology (GO), enzyme commission (EC) and kyoto encyclopedia of genes and genomes (KEGG) databases, extracted all the known enzymes involved in saponin and flavonoid biosynthesis. Few genes of the alkaloid biosynthesis, along with anticancer and plant defense genes, were also discovered. Additionally, several cytochrome P450 (CYP450) and glycosyltransferase unique sequences were also found. We identified simple sequence repeat motifs in transcripts with an abundance of di-nucleotide simple sequence repeat (SSR; 43.1%) markers. Large scale expression profiling through Reads per Kilobase per Million mapped reads (RPKM) showed major genes involved in different metabolic pathways of the plant. Genes, expressed sequence tags (ESTs) and unique sequences from this study provide an important resource for the scientific community, interested in the molecular genetics and functional genomics of C. borivilianum.


Assuntos
Regulação da Expressão Gênica de Plantas , Liliaceae/genética , Redes e Vias Metabólicas/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Transcriptoma , Alcaloides/biossíntese , Afrodisíacos/isolamento & purificação , Composição de Bases , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Repetições de Dinucleotídeos , Espécies em Perigo de Extinção , Etiquetas de Sequências Expressas , Flavonoides/biossíntese , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Liliaceae/química , Liliaceae/metabolismo , Anotação de Sequência Molecular , Folhas de Planta/química , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Medicinais , Saponinas/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA