Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Metabolomics ; 19(6): 52, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37249718

RESUMO

INTRODUCTION: Faba bean (Vicia faba L.) flowers are edible and used as garnishes because of their aroma, sweet flavor and attractive colors. Anthocyanins are the common plant pigments that give flowers their vivid colors, whereas non-anthocyanin flavonoids can serve as co-pigments that can modify the color intensity of flowers. OBJECTIVES: To explore the polyphenol diversity and differences in standard and wing petals of faba bean flowers; and identify glycosylated flavonoids that contribute to flower color. METHODS: Flower standard and wing petals from 30 faba bean genotypes (eight color groups with a total of 60 samples) were used for polyphenol extraction. Samples were analyzed using a targeted method and a semi-untargeted analysis using liquid chromatography-high resolution mass spectrometry (LC-HRMS) combined with photodiode array (PDA) detection. Compound Discoverer software was used for polyphenol identification and multivariate analysis. RESULTS: The semi-untargeted analysis guided by the PDA detected 90 flavonoid metabolites present in faba bean flower petals. Ten anthocyanins largely influenced the flower colors, but other flavonoids (63 flavonols and 12 flavones) found with variable levels in different flower color groups appeared to also influence color, especially in mixed colors. CONCLUSION: Analysis of the different colored faba bean flowers confirmed that the color variation between the flowers was mainly controlled by anthocyanins in brown, red and purple-red flowers. Of the other flavonoids, multiglycosylated kaempferols were abundant in white and brown flowers, monoglycosylated kaempferols were common in red and purple-red flowers, and quercetin and apigenin glycosides were abundant co-pigments in purple-red flowers.


Assuntos
Flavonoides , Vicia faba , Flavonoides/análise , Antocianinas/análise , Antocianinas/química , Antocianinas/metabolismo , Vicia faba/metabolismo , Quempferóis/análise , Quempferóis/metabolismo , Metabolômica , Flores/metabolismo , Polifenóis/metabolismo
2.
J Agric Food Chem ; 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36753710

RESUMO

Lentil seed coats are rich in antioxidant polyphenols that are important for plant defense and have potential as valorized byproducts. Although biochemical differences among lentil seed coat colors have been previously studied, differences among seed coat patterns remain largely unexplored. This study used mass spectrometry-based untargeted metabolomics to investigate polyphenol differences among lentil seed coat patterns to search for biochemical pathways potentially responsible for seed coat pattern differences. Comparing patterned with non-patterned green lentil seed coats, 28 significantly upregulated metabolites were found in patterned seed coats; 19 of them were identified as flavones. Flavones were virtually absent in non-patterned seed coats, thereby strongly suggesting a blockage in their flavone biosynthetic pathway. Although the black pattern is not readily discernible on black seed coats, many of the same flavones found in green marbled seed coats were also found in black seed coats, indicating that black seed coats likely have a marbled pattern.

3.
Food Chem ; 407: 135145, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521391

RESUMO

The seed coat is a major byproduct of lentil processing with potential as a sustainable source of antioxidant polyphenols. Profiles of water-soluble phenolic compounds and antioxidant activities of seven genotypes of lentil which includes both normal-tannin and low-tannin seed coats were investigated. Antioxidant activities were assessed using four antioxidant assays, and phenolic compounds were quantified using liquid chromatography mass spectrometry (LC-MS). Total phenolic content (TPC) varied significantly among genotypes and ranged between 1519 ± 140 and 6502 ± 154 µg/g. Thirty phenolic compounds were identified with kaempferol tetraglycoside, catechin-3-glucoside and procyanidins being the dominant compounds in normal-tannin seed coats. Kaempferol tetraglycoside predominated (80-90%) in low-tannin seed coats. Antioxidant activities strongly correlated with TPC (r > 0.93) with a 6-9 times higher activity in normal-tannin than that of low-tannin lentils. Without flavan-3-ols and procyanidins, low-tannin seed coat may not exert strong antioxidant potential, whereas normal-tannin seed coat contains water-extractable natural phenolic compounds with promising antioxidant potential.


Assuntos
Lens (Planta) , Proantocianidinas , Antioxidantes/química , Proantocianidinas/análise , Lens (Planta)/genética , Lens (Planta)/química , Quempferóis/análise , Fenóis/análise , Taninos/análise , Sementes/genética , Sementes/química , Genótipo
4.
Molecules ; 26(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201792

RESUMO

Pulse crop seed coats are a sustainable source of antioxidant polyphenols, but are typically treated as low-value products, partly because some polyphenols reduce iron bioavailability in humans. This study correlates antioxidant/iron chelation capabilities of diverse seed coat types from five major pulse crops (common bean, lentil, pea, chickpea and faba bean) with polyphenol composition using mass spectrometry. Untargeted metabolomics was used to identify key differences and a hierarchical analysis revealed that common beans had the most diverse polyphenol profiles among these pulse crops. The highest antioxidant capacities were found in seed coats of black bean and all tannin lentils, followed by maple pea, however, tannin lentils showed much lower iron chelation among these seed coats. Thus, tannin lentils are more desirable sources as natural antioxidants in food applications, whereas black bean and maple pea are more suitable sources for industrial applications. Regardless of pulse crop, proanthocyanidins were primary contributors to antioxidant capacity, and to a lesser extent, anthocyanins and flavan-3-ols, whereas glycosylated flavonols contributed minimally. Higher iron chelation was primarily attributed to proanthocyanidin composition, and also myricetin 3-O-glucoside in black bean. Seed coats having proanthocyanidins that are primarily prodelphinidins show higher iron chelation compared with those containing procyanidins and/or propelargonidins.


Assuntos
Antioxidantes/análise , Cicer/química , Quelantes de Ferro/química , Lens (Planta)/química , Metabolômica/métodos , Polifenóis/análise , Sementes/química , Vicia faba/química , Antioxidantes/química , Biflavonoides/análise , Disponibilidade Biológica , Catequina/análise , Correlação de Dados , Flavonoides/análise , Flavonóis/análise , Concentração Inibidora 50 , Espectrometria de Massas , Fenóis/análise , Proantocianidinas/análise , Taninos/análise
5.
J Agric Food Chem ; 68(28): 7530-7540, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32628473

RESUMO

Faba bean is a cool season grain legume that produces seeds with a high protein content. Seed coat tannins limit its use in food and feed. A low-tannin phenotype is controlled by either of two unlinked recessive genes zt1 and zt2. Liquid chromatography-mass spectrometry was used to characterize phenolic profiles of seed coat and flower tissue of three faba bean genotypes: CDC Snowdrop (zt1 gene), Disco/2 (zt2 gene), and ILB 938/2 (tannin-containing). For both tissues, clear differences in phenolic profiles of ILB 938/2 were observed in comparison to both low-tannin lines. Although seed coat phenolic profiles of zt1 and zt2 genotypes were similar, distinct differences were evident in flower tissue, suggesting that the gene action results in some different end products of the phenolic biosynthetic pathway. These distinctive compounds could be used as biochemical markers to distinguish between low-tannin phenotypes.


Assuntos
Fenóis/química , Proteínas de Plantas/genética , Sementes/química , Vicia faba/química , Genes Recessivos , Genótipo , Estrutura Molecular , Fenóis/metabolismo , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Taninos/análise , Taninos/metabolismo , Vicia faba/genética , Vicia faba/metabolismo
6.
Phytochem Anal ; 31(4): 458-471, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31869515

RESUMO

INTRODUCTION: Pulse crops are nutritious and therefore widely grown. Pulse seed coats are typically discarded, despite their high content of polyphenols that are known for their antioxidant properties and health benefits. A better understanding of polyphenol diversity and biochemical pathways will ultimately provide insight into how polyphenols are linked to health benefits, which will help to better utilise these seed coats. OBJECTIVES: To explore polyphenol profiles among seed coats of diverse genotypes of five pulse crops using a targeted liquid chromatography mass spectrometry (LC-MS) method. METHODS: Four genotypes of each of common bean, chickpea, pea, lentil and faba bean seed coats were selected for analysis. Following extraction, polyphenols were quantified using LC-MS. RESULTS: An LC-MS method was developed to quantify 98 polyphenols from 13 different classes in 30 min. The low-tannin seed coats had the lowest concentrations of all polyphenols. Chickpea and pea seed coats had the most similar polyphenolic profiles. The black common bean showed the most diverse seed coat polyphenol profile, including several anthocyanins not detected in any of the other seed coats. CONCLUSION: The LC-MS method reported herein was used to show polyphenol diversity within several polyphenol classes among the pulse crop seed coats. Detected in all seed coats, flavonols and hydroxybenzoic acids appear well-conserved in the edible Fabaceae. The presence of anthocyanins, flavan-3-ols and proanthocyanins in the coloured seed coats suggests that unique divergent branches were introduced in the flavonoid biosynthetic pathway, possibly in response to environmental stressors.


Assuntos
Polifenóis , Sementes , Cromatografia Líquida , Flavonoides , Espectrometria de Massas
7.
Front Plant Sci ; 9: 1131, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30123232

RESUMO

Polyphenols comprise the largest group of plant secondary metabolites and have critical roles in plant physiology and response to the biotic and abiotic environment. Changes in the content of polyphenols in the root extracts and root tissues of wild (Lens ervoides) and cultivated (Lens culinaris) lentil genotypes were examined in response to infection by Aphanomyces euteiches using liquid chromatography mass spectrometry (LC-MS). Genotype, infection and their interaction determined the composition of polyphenols in lentil roots. The levels of several polyphenols were lower in the root extract of the low-tannin genotype L. culinaris ZT-4 compared to L. ervoides L01-827A. Kaempferol derivatives including kaempferol dirutinoside and kaempferol 3-robinoside 7-rhamnoside were more concentrated in the healthy root tissues of L. ervoides L01-827A than in L. culinaris genotypes. Infection increased the concentration of kaempferol, apigenin, and naringenin in the root tissues of all genotypes, but had no effect on some polyphenols in the low-tannin genotype L. culinaris ZT-4. The concentrations of apigenin, naringenin, apigenin 4-glucoside, naringenin7-rutinoside, diosmetin, and hesperetin 7-rutinoside were higher in the infected root tissues of L. ervoides L01-827A compared with the L. culinaris genotypes. Organic acids including coumaric acid, vanillic acid, 4-aminosalicylic acid, 4-hydroxybenzoic acid, and 3,4-dihydroxybenzoic acid effectively suppressed the in-vitro hyphal growth of A. euteiches. Some of these bioactive polyphenols were more concentrated in roots of L. ervoides L01-827A but were low to undetectable in ZT-4. This study shows that genotypic differences exist in the composition of root polyphenols in lentil, and is related to the response to infection caused by A. euteiches. Polyphenols, particularly the organic acid content could be useful for selection and breeding of lentil genotypes that are resistant to Aphanomyces root rot (ARR) disease.

8.
J Am Soc Mass Spectrom ; 25(12): 2143-53, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25267086

RESUMO

Simulations show that significant ion losses occur within the commercial electrospray ionization-field asymmetric waveform ion mobility spectrometer (ESI-FAIMS) interface owing to an angular desolvation gas flow and because of the impact of the FAIMS carrier gas onto the inner rf (radio frequency) electrode. The angular desolvation gas flow diverts ions away from the entrance plate orifice while the carrier gas annihilates ions onto the inner rf electrode. A novel ESI-FAIMS interface is described that optimizes FAIMS gas flows resulting in large improvements in transmission. Simulations with the bromochloroacetate anion showed an improvement of ~9-fold to give ~70% overall transmission). Comparable transmission improvements were attained experimentally for six peptides (2+) in the range of m/z 404.2 to 653.4 at a chromatographic flow rate of 300 nL/min. Selected ion chromatograms (SIC) from nano-LC-FAIMS-MS analyses showed 71% (HLVDEPQNLIK, m/z 653.4, 2+) to 95% (LVNELTEFAK, m/z 582.3, 2+) of ion signal compared with ion signal in the SIC from LC-MS analysis. IGSEVYHNLK (580.3, 2+) showed 24% more ion signal compared with LC-MS and is explained by enhanced desolvation in FAIMS. A 3-10 times lower limits of quantitation (LOQ) (<15% RSD) was achieved for chemical noise limited peaks with FAIMS. Peaks limited by ion statistics showed subtle improvement in RSD and yielded comparable LOQ to that attained with nano-LC-MS (without FAIMS). These improvements were obtained using a reduced FAIMS separation gap (from 2.5 to 1.5 mm) that results in a shorter residence time (13.2 ms ± 3.9 ms) and enables the use of a helium free transport gas (100% nitrogen).


Assuntos
Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectrometria de Massas por Ionização por Electrospray/métodos , Eletrodos , Desenho de Equipamento , Gases/química , Nanotecnologia/instrumentação , Peptídeos/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
Artigo em Inglês | MEDLINE | ID: mdl-25173496

RESUMO

A systematic set of optimization experiments was conducted to design an efficient extraction and analysis protocol for screening six different sub-classes of phenolic compounds in the seed coat of various lentil (Lens culinaris Medik.) genotypes. Different compounds from anthocyanidins, flavan-3-ols, proanthocyanidins, flavanones, flavones, and flavonols sub-classes were first optimized for use as standards for liquid chromatography mass spectrometry (LC-MS) with UV detection. The effect of maceration duration, reconstitution solvent, and extraction solvent were investigated using lentil genotype CDC Maxim. Chromatographic conditions were optimized by examining column separation efficiencies, organic composition, and solvent gradient. The results showed that a 1h maceration step was sufficient and that non-acidified solvents were more appropriate; a 70:30 acetone: water (v/v) solvent was ultimately selected. Using a Kinetex PFP column, the organic concentration, gradient, and flow rate were optimized to maximize the resolution of phenolic compounds in a short 30-min analysis time. The optimized method was applied to three lentil genotypes with different phenolic compound profiles to provide information of value to breeding programs.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/isolamento & purificação , Lens (Planta)/química , Espectrometria de Massas/métodos , Sementes/química , Flavonoides/análise , Flavonoides/química , Reprodutibilidade dos Testes , Projetos de Pesquisa
10.
J Am Soc Mass Spectrom ; 25(7): 1274-84, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24796261

RESUMO

Recent reports describing enhanced performance when using gas additives in a DMS device (planar electrodes) have indicated that comparable benefits are not attainable using FAIMS (cylindrical electrodes), owing to the non-homogeneous electric fields within the analyzer region. In this study, a FAIMS system (having cylindrical electrodes) was modified to allow for controlled delivery of gas additives. An experiment was carried out that illustrates the important distinction between gas modifiers present as unregulated contaminants and modifiers added in a controlled manner. The effect of contamination was simulated by adjusting the ESI needle position to promote incomplete desolvation, thereby permitting ESI solvent vapor into the FAIMS analyzer region, causing signal instability and irreproducible CV values. However, by actively controlling the delivery of the gas modifier, reproducible CV spectra were obtained. The effects of adding different gas modifiers were examined using 15 positive ions having mass-to-charge (m/z) values between 90 and 734. Significant improvements in peak capacity and increases in ion transmission were readily attained by adding acetonitrile vapor, even at trace levels (≤0.1%). Increases in signal intensity were greatest for the low m/z ions; for the six lowest molecular weight species, signal intensities increased by ∼10- to over 100-fold compared with using nitrogen without gas additives, resulting in equivalent or better signal intensities compared with ESI without FAIMS. These results confirm that analytical benefits derived from the addition of gas modifiers reported with a uniform electric field (DMS) also are observed using a non-homogenous electric field (FAIMS) in the analyser region.

11.
Lipids ; 48(1): 75-85, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23054551

RESUMO

Triacylglycerol estolides have been reported as components of the seed oil of a number of plant species and are generally associated with the presence of fatty acids containing hydroxyl groups. We have used MALDI-TOF MS to examine the intact acylglycerol species present in the seed oils of two plants that produce kamlolenic acid (18-hydroxy-Δ9cis,11trans,13trans-octadecatrienoic acid). Mallotus philippensis and Trewia nudiflora were both shown to produce seed oil rich in TAG-estolides. Analysis by MALDI-TOF MS/MS demonstrated that the TAG-estolides had a structure different to that previously proposed after enzymatic digestion of the oil. Acylglycerols containing up to 14 fatty acids were detected but fatty acid estolides were only present in a single position on the glycerol backbone, with predominantly non-hydroxyl fatty acids in the remaining two positions. Increased numbers of fatty acids per glycerol backbone were accounted for by the presence of fatty acid estolides containing a correspondingly greater number of fatty acids. For example, acylglycerols containing seven fatty acids had a fatty acid estolide of five fatty acids at one position on the glycerol backbone. Both capped and uncapped fatty acid estolides, with a free hydroxyl group, were present, with capped fatty acid estolides being more abundant in T. nudiflora and uncapped fatty acid estolides in M. philippensis.


Assuntos
Euphorbiaceae/química , Mallotus (Planta)/química , Óleos de Plantas/química , Sementes/química , Triglicerídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
12.
J Am Soc Mass Spectrom ; 13(11): 1282-91, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12443018

RESUMO

High-field asymmetric waveform ion mobility spectrometry (FAIMS) separates gas-phase analyte ions from chemical background, offering substantial improvements in the detection of peptides from complex protein digests. For a digest of enolase 1 (baker's yeast), the focusing and separation offered by FAIMS produced an average intensity gain of 3.5 for the tryptic ions and reductions in background intensity of 5- to 10-fold when compared with ESI-MS. The increased signal-to-background in the ESI-FAIMS-MS experiment resulted in a greater number of identifiable peptides and therefore greater sequence coverage. Compensation voltage (CV) maps for a total of 282 tryptic peptides from thirteen proteins, generated according to charge-state, mass-to-charge ratios, and chain length, show that a majority of tryptic peptides can be detected by operating FAIMS at a few discrete values of CV rather than scanning CV across a wide range. The ability to reduce scanning requirements has potential benefits for coupling FAIMS with LC-MS. In select cases, FAIMS can be used to eliminate isobaric MS overlap between tryptic peptides; however, the primary advantage of FAIMS in an LC-FAIMS-MS analysis is foreseen to be the attenuation of chemical background noise rather than the separation of individual peptides. Using FAIMS to reduce mass spectral noise will offer improved detection of peptides from low abundance proteins in complex biological samples.


Assuntos
Peptídeos/análise , Hidrolisados de Proteína/análise , Proteínas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Tripsina/química , Sequência de Aminoácidos , Dados de Sequência Molecular , Espectrometria de Massas por Ionização por Electrospray/instrumentação
13.
Rapid Commun Mass Spectrom ; 16(7): 676-80, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11921246

RESUMO

High-field asymmetric waveform ion mobility spectrometry (FAIMS) has been coupled to a quadrupole time-of-flight mass spectrometer for the tandem mass spectrometric analysis of tryptic peptides of pig hemoglobin. Using FAIMS, low levels (fmol/microL) of multiply charged tryptic peptides were separated from relatively intense chemical background such that their tandem mass spectra (MS/MS) lacked many background-related fragment ions observed using a conventional ESI-QqTOFMS instrument. Substantial improvements in both first-order and tandem mass spectra were realized while maintaining approximately the same absolute intensities.


Assuntos
Peptídeos/análise , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Tripsina/química , Animais , Hemoglobinas/química , Reprodutibilidade dos Testes , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA