Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(7): e2309261121, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38324568

RESUMO

The CDK4/6 inhibitor palbociclib blocks cell cycle progression in Estrogen receptor-positive, human epidermal growth factor 2 receptor-negative (ER+/HER2-) breast tumor cells. Despite the drug's success in improving patient outcomes, a small percentage of tumor cells continues to divide in the presence of palbociclib-a phenomenon we refer to as fractional resistance. It is critical to understand the cellular mechanisms underlying fractional resistance because the precise percentage of resistant cells in patient tissue is a strong predictor of clinical outcomes. Here, we hypothesize that fractional resistance arises from cell-to-cell differences in core cell cycle regulators that allow a subset of cells to escape CDK4/6 inhibitor therapy. We used multiplex, single-cell imaging to identify fractionally resistant cells in both cultured and primary breast tumor samples resected from patients. Resistant cells showed premature accumulation of multiple G1 regulators including E2F1, retinoblastoma protein, and CDK2, as well as enhanced sensitivity to pharmacological inhibition of CDK2 activity. Using trajectory inference approaches, we show how plasticity among cell cycle regulators gives rise to alternate cell cycle "paths" that allow individual tumor cells to escape palbociclib treatment. Understanding drivers of cell cycle plasticity, and how to eliminate resistant cell cycle paths, could lead to improved cancer therapies targeting fractionally resistant cells to improve patient outcomes.


Assuntos
Neoplasias da Mama , Piperazinas , Piridinas , Humanos , Feminino , Ciclo Celular , Divisão Celular , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Inibidores de Proteínas Quinases/farmacologia
2.
Nature ; 625(7995): 585-592, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200309

RESUMO

Oncogene-induced replication stress generates endogenous DNA damage that activates cGAS-STING-mediated signalling and tumour suppression1-3. However, the precise mechanism of cGAS activation by endogenous DNA damage remains enigmatic, particularly given that high-affinity histone acidic patch (AP) binding constitutively inhibits cGAS by sterically hindering its activation by double-stranded DNA (dsDNA)4-10. Here we report that the DNA double-strand break sensor MRE11 suppresses mammary tumorigenesis through a pivotal role in regulating cGAS activation. We demonstrate that binding of the MRE11-RAD50-NBN complex to nucleosome fragments is necessary to displace cGAS from acidic-patch-mediated sequestration, which enables its mobilization and activation by dsDNA. MRE11 is therefore essential for cGAS activation in response to oncogenic stress, cytosolic dsDNA and ionizing radiation. Furthermore, MRE11-dependent cGAS activation promotes ZBP1-RIPK3-MLKL-mediated necroptosis, which is essential to suppress oncogenic proliferation and breast tumorigenesis. Notably, downregulation of ZBP1 in human triple-negative breast cancer is associated with increased genome instability, immune suppression and poor patient prognosis. These findings establish MRE11 as a crucial mediator that links DNA damage and cGAS activation, resulting in tumour suppression through ZBP1-dependent necroptosis.


Assuntos
Transformação Celular Neoplásica , Proteína Homóloga a MRE11 , Nucleossomos , Nucleotidiltransferases , Humanos , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Dano ao DNA , Proteína Homóloga a MRE11/metabolismo , Necroptose , Nucleossomos/metabolismo , Nucleotidiltransferases/metabolismo , Radiação Ionizante , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Instabilidade Genômica
3.
BMC Bioinformatics ; 25(1): 25, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38221640

RESUMO

With the growing number of single-cell datasets collected under more complex experimental conditions, there is an opportunity to leverage single-cell variability to reveal deeper insights into how cells respond to perturbations. Many existing approaches rely on discretizing the data into clusters for differential gene expression (DGE), effectively ironing out any information unveiled by the single-cell variability across cell-types. In addition, DGE often assumes a statistical distribution that, if erroneous, can lead to false positive differentially expressed genes. Here, we present Cellograph: a semi-supervised framework that uses graph neural networks to quantify the effects of perturbations at single-cell granularity. Cellograph not only measures how prototypical cells are of each condition but also learns a latent space that is amenable to interpretable data visualization and clustering. The learned gene weight matrix from training reveals pertinent genes driving the differences between conditions. We demonstrate the utility of our approach on publicly-available datasets including cancer drug therapy, stem cell reprogramming, and organoid differentiation. Cellograph outperforms existing methods for quantifying the effects of experimental perturbations and offers a novel framework to analyze single-cell data using deep learning.


Assuntos
Visualização de Dados , Redes Neurais de Computação , Diferenciação Celular , Análise por Conglomerados , RNA
4.
Cell Syst ; 14(4): 252-257, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37080161

RESUMO

Collective cell behavior contributes to all stages of cancer progression. Understanding how collective behavior emerges through cell-cell interactions and decision-making will advance our understanding of cancer biology and provide new therapeutic approaches. Here, we summarize an interdisciplinary discussion on multicellular behavior in cancer, draw lessons from other scientific disciplines, and identify future directions.


Assuntos
Comportamento de Massa , Neoplasias , Humanos , Comunicação
5.
Elife ; 102021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851822

RESUMO

Cell cycle gene expression programs fuel proliferation and are universally dysregulated in cancer. The retinoblastoma (RB)-family of proteins, RB1, RBL1/p107, and RBL2/p130, coordinately represses cell cycle gene expression, inhibiting proliferation, and suppressing tumorigenesis. Phosphorylation of RB-family proteins by cyclin-dependent kinases is firmly established. Like phosphorylation, ubiquitination is essential to cell cycle control, and numerous proliferative regulators, tumor suppressors, and oncoproteins are ubiquitinated. However, little is known about the role of ubiquitin signaling in controlling RB-family proteins. A systems genetics analysis of CRISPR/Cas9 screens suggested the potential regulation of the RB-network by cyclin F, a substrate recognition receptor for the SCF family of E3 ligases. We demonstrate that RBL2/p130 is a direct substrate of SCFcyclin F. We map a cyclin F regulatory site to a flexible linker in the p130 pocket domain, and show that this site mediates binding, stability, and ubiquitination. Expression of a mutant version of p130, which cannot be ubiquitinated, severely impaired proliferative capacity and cell cycle progression. Consistently, we observed reduced expression of cell cycle gene transcripts, as well a reduced abundance of cell cycle proteins, analyzed by quantitative, iterative immunofluorescent imaging. These data suggest a key role for SCFcyclin F in the CDK-RB network and raise the possibility that aberrant p130 degradation could dysregulate the cell cycle in human cancers.


Assuntos
Ciclinas/genética , Proteína p130 Retinoblastoma-Like/genética , Retinoblastoma/genética , Fator de Células-Tronco/genética , Ciclinas/metabolismo , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Proteína p130 Retinoblastoma-Like/metabolismo , Fator de Células-Tronco/metabolismo
6.
Aging Cell ; 19(7): e13171, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32662244

RESUMO

The tumor suppressor protein p16INK4a (p16) is a well-established hallmark of aging that induces cellular senescence in response to stress. Previous studies have focused primarily on p16 regulation at the transcriptional level; comparatively little is known about the protein's intracellular localization and degradation. The autophagy-lysosomal pathway has been implicated in the subcellular trafficking and turnover of various stress-response proteins and has also been shown to attenuate age-related pathologies, but it is unclear whether p16 is involved in this pathway. Here, we investigate the role of autophagy, vesicular trafficking, and lysosomal degradation on p16 expression and localization in human epithelial cells. Time-lapse fluorescence microscopy using an endogenous p16-mCherry reporter revealed that serum starvation, etoposide, and hydrogen peroxide stimulate autophagy and drive p16 recruitment to acidic cytoplasmic vesicles within 4 hr. Blocking lysosomal proteases with leupeptin and ammonium chloride resulted in the accumulation of p16 within lysosomes and increased total p16 levels suggesting that p16 is degraded by this pathway. Furthermore, autophagy blockers chloroquine and bafilomycin A1 caused p16 aggregation within stalled vesicles containing autophagosome marker LC3. Increase of p16 within these vesicles coincided with the accumulation of LC3-II. Knockdown of autophagosome chaperone p62 attenuated the formation of p16 aggregates in lysosomes, suggesting that p16 is targeted to these vesicles by p62. Taken together, these results implicate the autophagy pathway as a novel regulator of p16 degradation and localization, which could play a role in the etiology of cancer and age-related diseases.


Assuntos
Autofagia/fisiologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Lisossomos/metabolismo , Humanos
7.
NAR Cancer ; 2(4): zcaa038, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33385162

RESUMO

TP53 deficiency in cancer is associated with poor patient outcomes and resistance to DNA damaging therapies. However, the mechanisms underlying treatment resistance in p53-deficient cells remain poorly characterized. Using live cell imaging of DNA double-strand breaks (DSBs) and cell cycle state transitions, we show that p53-deficient cells exhibit accelerated repair of radiomimetic-induced DSBs arising in S phase. Low-dose DNA-dependent protein kinase (DNA-PK) inhibition increases the S-phase DSB burden in p53-deficient cells, resulting in elevated rates of mitotic catastrophe. However, a subset of p53-deficient cells exhibits intrinsic resistance to radiomimetic-induced DSBs despite DNA-PK inhibition. We show that p53-deficient cells under DNA-PK inhibition utilize DNA polymerase theta (Pol θ)-mediated end joining repair to promote their viability in response to therapy-induced DSBs. Pol θ inhibition selectively increases S-phase DSB burden after radiomimetic therapy and promotes prolonged G2 arrest. Dual inhibition of DNA-PK and Pol θ restores radiation sensitivity in p53-deficient cells as well as in p53-mutant breast cancer cell lines. Thus, combination targeting of DNA-PK- and Pol θ-dependent end joining repair represents a promising strategy for overcoming resistance to DNA damaging therapies in p53-deficient cancers.

8.
FEBS Lett ; 593(20): 2805-2816, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31566708

RESUMO

Progression through the cell cycle is driven by bistable switches-specialized molecular circuits that govern transitions from one cellular state to another. Although the mechanics of bistable switches are relatively well understood, it is less clear how cells integrate multiple sources of molecular information to engage these switches. Here, we describe how bistable switches act as hubs of information processing and examine how variability, competition, and inheritance of molecular signals determine the timing of the Rb-E2F bistable switch that controls cell cycle entry. Bistable switches confer both robustness and plasticity to cell cycle progression, ensuring that cell cycle events are performed completely and in the correct order, while still allowing flexibility to cope with ongoing stress and changing environmental conditions.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Ciclo Celular/genética , Quinases Ciclina-Dependentes/genética , Reparo do DNA , Fatores de Transcrição E2F/genética , Proteína do Retinoblastoma/genética , Animais , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Quinases Ciclina-Dependentes/metabolismo , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Fatores de Transcrição E2F/metabolismo , Células Eucarióticas/citologia , Células Eucarióticas/efeitos dos fármacos , Células Eucarióticas/metabolismo , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Mitógenos/farmacologia , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais
9.
Nat Commun ; 10(1): 4286, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537809

RESUMO

Polymerase theta (Pol θ, gene name Polq) is a widely conserved DNA polymerase that mediates a microhomology-mediated, error-prone, double strand break (DSB) repair pathway, referred to as Theta Mediated End Joining (TMEJ). Cells with homologous recombination deficiency are reliant on TMEJ for DSB repair. It is unknown whether deficiencies in other components of the DNA damage response (DDR) also result in Pol θ addiction. Here we use a CRISPR genetic screen to uncover 140 Polq synthetic lethal (PolqSL) genes, the majority of which were previously unknown. Functional analyses indicate that Pol θ/TMEJ addiction is associated with increased levels of replication-associated DSBs, regardless of the initial source of damage. We further demonstrate that approximately 30% of TCGA breast cancers have genetic alterations in PolqSL genes and exhibit genomic scars of Pol θ/TMEJ hyperactivity, thereby substantially expanding the subset of human cancers for which Pol θ inhibition represents a promising therapeutic strategy.


Assuntos
Neoplasias da Mama/genética , Reparo do DNA por Junção de Extremidades/genética , DNA Polimerase Dirigida por DNA/genética , Aminoquinolinas/toxicidade , Animais , Sistemas CRISPR-Cas/genética , Linhagem Celular , Quebras de DNA de Cadeia Dupla , DNA Polimerase Dirigida por DNA/metabolismo , Células HEK293 , Humanos , Camundongos , Mitomicina/toxicidade , Ácidos Picolínicos/toxicidade , DNA Polimerase teta
10.
Mol Syst Biol ; 15(3): e8604, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886052

RESUMO

The cell cycle is canonically described as a series of four consecutive phases: G1, S, G2, and M. In single cells, the duration of each phase varies, but the quantitative laws that govern phase durations are not well understood. Using time-lapse microscopy, we found that each phase duration follows an Erlang distribution and is statistically independent from other phases. We challenged this observation by perturbing phase durations through oncogene activation, inhibition of DNA synthesis, reduced temperature, and DNA damage. Despite large changes in durations in cell populations, phase durations remained uncoupled in individual cells. These results suggested that the independence of phase durations may arise from a large number of molecular factors that each exerts a minor influence on the rate of cell cycle progression. We tested this model by experimentally forcing phase coupling through inhibition of cyclin-dependent kinase 2 (CDK2) or overexpression of cyclin D. Our work provides an explanation for the historical observation that phase durations are both inherited and independent and suggests how cell cycle progression may be altered in disease states.


Assuntos
Ciclo Celular/fisiologia , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Replicação do DNA/genética , Ciclina D/genética , Ciclina D/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Dano ao DNA , Humanos , Oncogenes/genética , Temperatura
11.
Cell Cycle ; 17(21-22): 2496-2516, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30421640

RESUMO

Cell cycle phase transitions are tightly orchestrated to ensure efficient cell cycle progression and genome stability. Interrogating these transitions is important for understanding both normal and pathological cell proliferation. By quantifying the dynamics of the popular FUCCI reporters relative to the transitions into and out of S phase, we found that their dynamics are substantially and variably offset from true S phase boundaries. To enhance detection of phase transitions, we generated a new reporter whose oscillations are directly coupled to DNA replication and combined it with the FUCCI APC/C reporter to create "PIP-FUCCI". The PIP degron fusion protein precisely marks the G1/S and S/G2 transitions; shows a rapid decrease in signal in response to large doses of DNA damage only during G1; and distinguishes cell type-specific and DNA damage source-dependent arrest phenotypes. We provide guidance to investigators in selecting appropriate fluorescent cell cycle reporters and new analysis strategies for delineating cell cycle transitions.


Assuntos
Pontos de Checagem do Ciclo Celular , Proliferação de Células , Microscopia de Fluorescência , Análise de Célula Única/métodos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Genes Reporter , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo
12.
Nat Struct Mol Biol ; 24(10): 840-847, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28825732

RESUMO

The dynamics of transcription factors play important roles in a variety of biological systems. However, the mechanisms by which these dynamics are decoded into different transcriptional responses are not well understood. Here we focus on the dynamics of the tumor-suppressor protein p53, which exhibits a series of pulses in response to DNA damage. We performed time course RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) measurements to determine how p53 oscillations are linked with gene expression genome wide. We discovered multiple distinct patterns of gene expression in response to p53 pulses. Surprisingly, p53-binding dynamics were uniform across all genomic loci, even for genes that exhibited distinct mRNA dynamics. Using a mathematical model, supported by additional experimental measurements in response to sustained p53 input, we determined that p53 binds to and activates transcription of its target genes uniformly, whereas post-transcriptional mechanisms are responsible for the differences in gene expression dynamics.


Assuntos
Dano ao DNA , DNA/metabolismo , Perfilação da Expressão Gênica , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo , Imunoprecipitação da Cromatina , Humanos , Células MCF-7 , Modelos Teóricos , Ligação Proteica , Análise de Sequência de RNA , Proteína Supressora de Tumor p53/genética
13.
RNA ; 22(10): 1592-603, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27539783

RESUMO

Estrogen receptor α (ERα) is an important biomarker of breast cancer severity and a common therapeutic target. In response to estrogen, ERα stimulates a dynamic transcriptional program including both coding and noncoding RNAs. We generate a fine-scale map of expression dynamics by performing a temporal profiling of both messenger RNAs (mRNAs) and microRNAs (miRNAs) in MCF-7 cells (an ER+ model cell line for breast cancer) in response to estrogen stimulation. We identified three primary expression trends-transient, induced, and repressed-that were each enriched for genes with distinct cellular functions. Integrative analysis of mRNA and miRNA temporal expression profiles identified miR-503 as the strongest candidate master regulator of the estrogen response, in part through suppression of ZNF217-an oncogene that is frequently amplified in cancer. We confirmed experimentally that miR-503 directly targets ZNF217 and that overexpression of miR-503 suppresses MCF-7 cell proliferation. Moreover, the levels of ZNF217 and miR-503 are associated with opposite outcomes in breast cancer patient cohorts, with high expression of ZNF217 associated with poor survival and high expression of miR-503 associated with improved survival. Overall, these data indicate that miR-503 acts as a potent estrogen-induced candidate tumor suppressor miRNA that opposes cellular proliferation and has promise as a novel therapeutic for breast cancer. More generally, our work provides a systems-level framework for identifying functional interactions that shape the temporal dynamics of gene expression.


Assuntos
Estrogênios/farmacologia , MicroRNAs/genética , Transcriptoma , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , MicroRNAs/metabolismo , Transativadores/genética , Transativadores/metabolismo
14.
Cell ; 152(5): 945-56, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23452846

RESUMO

A growing number of studies are revealing that cells can send and receive information by controlling the temporal behavior (dynamics) of their signaling molecules. In this Review, we discuss what is known about the dynamics of various signaling networks and their role in controlling cellular responses. We identify general principles that are emerging in the field, focusing specifically on how the identity and quantity of a stimulus is encoded in temporal patterns, how signaling dynamics influence cellular outcomes, and how specific dynamical patterns are both shaped and interpreted by the structure of molecular networks. We conclude by discussing potential functional roles for transmitting cellular information through the dynamics of signaling molecules and possible applications for the treatment of disease.


Assuntos
Células/metabolismo , Transdução de Sinais , Animais , Fator de Crescimento Epidérmico/metabolismo , Redes Reguladoras de Genes , Humanos , Fator de Crescimento Neural/metabolismo , Fatores de Tempo , Proteína Supressora de Tumor p53/metabolismo
15.
Science ; 336(6087): 1440-4, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22700930

RESUMO

Cells transmit information through molecular signals that often show complex dynamical patterns. The dynamic behavior of the tumor suppressor p53 varies depending on the stimulus; in response to double-strand DNA breaks, it shows a series of repeated pulses. Using a computational model, we identified a sequence of precisely timed drug additions that alter p53 pulses to instead produce a sustained p53 response. This leads to the expression of a different set of downstream genes and also alters cell fate: Cells that experience p53 pulses recover from DNA damage, whereas cells exposed to sustained p53 signaling frequently undergo senescence. Our results show that protein dynamics can be an important part of a signal, directly influencing cellular fate decisions.


Assuntos
Senescência Celular/genética , Quebras de DNA de Cadeia Dupla , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Apoptose/genética , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Reparo do DNA , Raios gama , Humanos , Imidazóis/metabolismo , Imidazóis/farmacologia , Modelos Biológicos , Proteínas Nucleares/genética , Piperazinas/metabolismo , Piperazinas/farmacologia , Proteína da Leucemia Promielocítica , Análise de Célula Única , Fatores de Transcrição/genética , Ativação Transcricional , Proteínas Supressoras de Tumor/genética
16.
Artigo em Inglês | MEDLINE | ID: mdl-25285322

RESUMO

A multiscale strategy is presented for constructing models of intracellular signaling networks in which the oncogenic behavior of the network is encoded through alternate parameterization of the kinetic and structural properties of mutant oncoproteins. The approach uses molecular dynamics and docking simulations to quantify altered topologies of interactions as well as to provide the missing parameters for network models of both wild-type and oncogenic signaling. Through simulation of the resulting signaling networks, the global behavior of these networks may then be compared and functional roles may be assigned to the mutant oncoproteins. An example of this approach is presented in which structural alterations found in a mutant form of the epidermal growth factor receptor are represented as kinetic perturbations in a model of growth factor signaling. Based on network parameters estimated from molecular-level simulations, simulations at the network level show that small perturbations in molecular structure can lead to profoundly altered cellular phenotype.

17.
Nat Biotechnol ; 28(7): 727-32, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20562863

RESUMO

Prediction of cellular response to multiple stimuli is central to evaluating patient-specific clinical status and to basic understanding of cell biology. Cross-talk between signaling pathways cannot be predicted by studying them in isolation and the combinatorial complexity of multiple agonists acting together prohibits an exhaustive exploration of the complete experimental space. Here we describe pairwise agonist scanning (PAS), a strategy that trains a neural network model based on measurements of cellular responses to individual and all pairwise combinations of input signals. We apply PAS to predict calcium signaling responses of human platelets in EDTA-treated plasma to six different agonists (ADP, convulxin, U46619, SFLLRN, AYPGKF and PGE(2)) at three concentrations (0.1, 1 and 10 x EC(50)). The model predicted responses to sequentially added agonists, to ternary combinations of agonists and to 45 different combinations of four to six agonists (R = 0.88). Furthermore, we use PAS to distinguish between the phenotypic responses of platelets from ten donors. Training neural networks with pairs of stimuli across the dose-response regime represents an efficient approach for predicting complex signal integration in a patient-specific disease milieu.


Assuntos
Plaquetas/efeitos dos fármacos , Transdução de Sinais , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Difosfato de Adenosina/farmacologia , Plaquetas/metabolismo , Venenos de Crotalídeos/farmacologia , Dinoprostona/farmacologia , Relação Dose-Resposta a Droga , Humanos , Lectinas Tipo C , Redes Neurais de Computação , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/farmacologia
18.
Mol Pharmacol ; 78(2): 319-24, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20466822

RESUMO

A tetrahydroquinoline oxocarbazate (PubChem CID 23631927) was tested as an inhibitor of human cathepsin L (EC 3.4.22.15) and as an entry blocker of severe acute respiratory syndrome (SARS) coronavirus and Ebola pseudotype virus. In the cathepsin L inhibition assay, the oxocarbazate caused a time-dependent 17-fold drop in IC(50) from 6.9 nM (no preincubation) to 0.4 nM (4-h preincubation). Slowly reversible inhibition was demonstrated in a dilution assay. A transient kinetic analysis using a single-step competitive inhibition model provided rate constants of k(on) = 153,000 M(-1)s(-1) and k(off) = 4.40 x 10(-5) s(-1) (K(i) = 0.29 nM). The compound also displayed cathepsin L/B selectivity of >700-fold and was nontoxic to human aortic endothelial cells at 100 muM. The oxocarbazate and a related thiocarbazate (PubChem CID 16725315) were tested in a SARS coronavirus (CoV) and Ebola virus-pseudotype infection assay with the oxocarbazate but not the thiocarbazate, demonstrating activity in blocking both SARS-CoV (IC(50) = 273 +/- 49 nM) and Ebola virus (IC(50) = 193 +/- 39 nM) entry into human embryonic kidney 293T cells. To trace the intracellular action of the inhibitors with intracellular cathepsin L, the activity-based probe biotin-Lys-C5 alkyl linker-Tyr-Leu-epoxide (DCG-04) was used to label the active site of cysteine proteases in 293T lysates. The reduction in active cathepsin L in inhibitor-treated cells correlated well with the observed potency of inhibitors observed in the virus pseudotype infection assay. Overall, the oxocarbazate CID 23631927 was a subnanomolar, slow-binding, reversible inhibitor of human cathepsin L that blocked SARS-CoV and Ebola pseudotype virus entry in human cells.


Assuntos
Antivirais/farmacologia , Catepsina L/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Doença pelo Vírus Ebola/prevenção & controle , Quinolinas/farmacologia , Quinolonas/farmacologia , Síndrome Respiratória Aguda Grave/prevenção & controle , Linhagem Celular , Humanos , Cinética
19.
Blood ; 112(10): 4069-79, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18596227

RESUMO

To quantify how various molecular mechanisms are integrated to maintain platelet homeostasis and allow responsiveness to adenosine diphosphate (ADP), we developed a computational model of the human platelet. Existing kinetic information for 77 reactions, 132 fixed kinetic rate constants, and 70 species was combined with electrochemical calculations, measurements of platelet ultrastructure, novel experimental results, and published single-cell data. The model accurately predicted: (1) steady-state resting concentrations for intracellular calcium, inositol 1,4,5-trisphosphate, diacylglycerol, phosphatidic acid, phosphatidylinositol, phosphatidylinositol phosphate, and phosphatidylinositol 4,5-bisphosphate; (2) transient increases in intracellular calcium, inositol 1,4,5-trisphosphate, and G(q)-GTP in response to ADP; and (3) the volume of the platelet dense tubular system. A more stringent test of the model involved stochastic simulation of individual platelets, which display an asynchronous calcium spiking behavior in response to ADP. Simulations accurately reproduced the broad frequency distribution of measured spiking events and demonstrated that asynchronous spiking was a consequence of stochastic fluctuations resulting from the small volume of the platelet. The model also provided insights into possible mechanisms of negative-feedback signaling, the relative potency of platelet agonists, and cell-to-cell variation across platelet populations. This integrative approach to platelet biology offers a novel and complementary strategy to traditional reductionist methods.


Assuntos
Plaquetas/metabolismo , Sinalização do Cálcio/fisiologia , Homeostase/fisiologia , Modelos Biológicos , Fosfatidilinositóis/metabolismo , Receptores Purinérgicos P2/metabolismo , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Plaquetas/ultraestrutura , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , Agonistas do Receptor Purinérgico P2 , Receptores Purinérgicos P2Y1
20.
J Chem Inf Model ; 48(7): 1464-72, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18598021

RESUMO

The papain/CLIK-148 coordinate system was employed as a model to study the interactions of a nonpeptide thiocarbazate inhibitor of cathepsin L ( 1). This small molecule inhibitor, a thiol ester containing a diacyl hydrazine functionality and one stereogenic center, was most active as the S-enantiomer, with an IC 50 of 56 nM; the R-enantiomer ( 2) displayed only weak activity (33 microM). Correspondingly, molecular docking studies with Extra Precision Glide revealed a correlation between score and biological activity for the two thiocarbazate enantiomers when a structural water was preserved. The molecular interactions between 1 and papain were very similar to the interactions observed for CLIK-148 ( 3a and 3b) with papain, especially with regard to the hydrogen-bonding and lipophilic interactions of the ligands with conserved residues in the catalytic binding site. Subsequent docking of virtual compounds in the binding site led to the identification of a more potent inhibitor ( 5), with an IC 50 of 7.0 nM. These docking studies revealed that favorable energy scores and correspondingly favorable biological activities could be realized when the virtual compound design included occupation of the S2, S3, and S1' subsites by hydrophobic and aromatic functionalities of the ligand, and at least three hydrogen bonding contacts between the ligand and the conserved binding site residues of the protein.


Assuntos
Catepsinas/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Papaína/farmacologia , Sítios de Ligação , Catepsina L , Cisteína Endopeptidases , Inibidores de Cisteína Proteinase/metabolismo , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Papaína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA