Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 1000688, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118212

RESUMO

Aflatoxin contamination can appear in various points of the food chain. If animals are fed with contaminated feed, AFB1 is transformed-among others-to aflatoxin M1 (AFM1) metabolite. AFM1 is less toxic than AFB1, but it is still genotoxic and carcinogenic and it is present in raw and processed milk and all kinds of milk products. In this article, the chronic exposure estimation and risk characterization of Hungarian consumers are presented, based on the AFM1 contamination of milk and dairy products, and calculated with a probabilistic method, the two-dimensional Monte-Carlo model. The calculations were performed using the R plugin (mc2d package) integrated into the KNIME (Konstanz Information Miner) software. The simulations were performed using data from the 2018-2020 food consumption survey. The AFM1 analytical data were derived from the Hungarian monitoring survey and 1,985 milk samples were analyzed within the framework of the joint project of the University of Debrecen and the National Food Chain Safety Office of Hungary (NÉBIH). Limited AFM1 concentrations were available for processed dairy products; therefore, a database of AFM1 processing factors for sour milk products and various cheeses was produced based on the latest literature data, and consumer exposure was calculated with the milk equivalent of the consumed quantities of these products. For risk characterization, the calculation of hazard index (HI), Margin of Exposure, and the hepatocellular carcinoma incidence were used. The results indicate that the group of toddlers that consume a large amount of milk and milk products are exposed to a certain level of health risk. The mean estimated daily intake of toddlers is in the range of 0.008-0.221 ng kg-1 bw day-1; the 97.5th percentile exposure of toddlers is between 0.013 ng kg-1 bw day-1 and 0.379 ng kg-1 bw day-1, resulting in a HI above 1. According to our study, the exposure of older age groups does not pose an emergent health risk. Nevertheless, the presence of carcinogenic compounds should be kept to a minimum in the whole population.

2.
Front Microbiol ; 13: 1085891, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36762096

RESUMO

Aflatoxins are toxic secondary metabolites produced by Aspergillus spp. found in staple food and feed commodities worldwide. Aflatoxins are carcinogenic, teratogenic, and mutagenic, and pose a serious threat to the health of both humans and animals. The global economy and trade are significantly affected as well. Various models and datasets related to aflatoxins in maize have been developed and used but have not yet been linked. The prevention of crop loss due to aflatoxin contamination is complex and challenging. Hence, the set-up of advanced decontamination is crucial to cope with the challenge of climate change, growing population, unstable political scenarios, and food security problems also in European countries. After harvest, decontamination methods can be applied during transport, storage, or processing, but their application for aflatoxin reduction is still limited. Therefore, this review aims to investigate the effects of environmental factors on aflatoxin production because of climate change and to critically discuss the present-day and novel decontamination techniques to unravel gaps and limitations to propose them as a tool to tackle an increased aflatoxin risk in Europe.

3.
Appl Environ Microbiol ; 87(9)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33637571

RESUMO

Glutathione (GSH) is an abundant tripeptide that plays a crucial role in shielding cellular macromolecules from various reactive oxygen and nitrogen species in fungi. Understanding GSH metabolism is of vital importance for deciphering redox regulation in these microorganisms. In the present study, to better understand the GSH metabolism in filamentous fungi, we investigated functions of the dugB and dugC genes in the model fungus Aspergillus nidulans These genes are orthologues of dug2 and dug3, which are involved in cytosolic GSH degradation in Saccharomyces cerevisiae The deletion of dugB, dugC, or both resulted in a moderate increase in the GSH content in mycelia grown on glucose, reduced conidium production, and disturbed sexual development. In agreement with these observations, transcriptome data showed that genes encoding mitogen-activated protein (MAP) kinase pathway elements (e.g., steC, sskB, hogA, and mkkA) or regulatory proteins of conidiogenesis and sexual differentiation (e.g., flbA, flbC, flbE, nosA, rosA, nsdC, and nsdD) were downregulated in the ΔdugB ΔdugC mutant. Deletion of dugB and/or dugC slowed the depletion of GSH pools during carbon starvation. It also reduced accumulation of reactive oxygen species and decreased autolytic cell wall degradation and enzyme secretion but increased sterigmatocystin formation. Transcriptome data demonstrated that enzyme secretions-in contrast to mycotoxin production-were controlled at the posttranscriptional level. We suggest that GSH connects starvation and redox regulation to each other: cells utilize GSH as a stored carbon source during starvation. The reduction of GSH content alters the redox state, activating regulatory pathways responsible for carbon starvation stress responses.IMPORTANCE Glutathione (GSH) is a widely distributed tripeptide in both eukaryotes and prokaryotes. Owing to its very low redox potential, antioxidative character, and high intracellular concentration, GSH profoundly shapes the redox status of cells. Our observations suggest that GSH metabolism and/or the redox status of cells plays a determinative role in several important aspects of fungal life, including oxidative stress defense, protein secretion, and secondary metabolite production (including mycotoxin formation), as well as sexual and asexual differentiations. We demonstrated that even a slightly elevated GSH level can substantially disturb the homeostasis of fungi. This information could be important for development of new GSH-producing strains or for any biotechnologically relevant processes where the GSH content, antioxidant capacity, or oxidative stress tolerance of a fungal strain is manipulated.


Assuntos
Aspergillus nidulans/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Proteínas Fúngicas/metabolismo , Glutationa/metabolismo , Peptídeo Hidrolases/metabolismo , Aspergillus nidulans/genética , Carbono-Nitrogênio Ligases/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Mutação , Peptídeo Hidrolases/genética , Transcriptoma
4.
J Trace Elem Med Biol ; 30: 96-101, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25524403

RESUMO

Selenium deficiency is a major health problem worldwide for about 1 billion people. Bacterial cells usually possess low tolerance to selenite stress and also low ability to reduce high concentrations of toxic selenite. Here, high tolerance to selenite and selenium bioaccumulation capability were developed in mutated clones of probiotic and starter bacteria including Enterococcus faecium, Bifidobacterium animalis ssp. lactis, Lactobacillus casei and Lactococcus lactis ssp. lactis by food-level strain development process and clone selection. All mutant clones possessed increased glutathione concentration and glutathione reductase activity. The selenite treatment increased further these values in L. casei mutant strain pointing at a different selenite reduction pathway and/or stress response in this organism. Considerable conversion of selenite to cell bound selenium forms with a concomitant high biomass production was detected in E. faecium and B. animalis ssp. lactis cultures. Possible application of these strains as food and feed supplements is under investigation.


Assuntos
Bactérias/metabolismo , Mutação/genética , Probióticos/farmacologia , Ácido Selenioso/farmacologia , Selênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Adaptação Fisiológica/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Bifidobacterium/efeitos dos fármacos , Bifidobacterium/crescimento & desenvolvimento , Bifidobacterium/metabolismo , Biomassa , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Lactobacillus/efeitos dos fármacos , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/metabolismo
5.
BMC Genomics ; 6: 182, 2005 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-16368011

RESUMO

BACKGROUND: In addition to their cytotoxic nature, reactive oxygen species (ROS) are also signal molecules in diverse cellular processes in eukaryotic organisms. Linking genome-wide transcriptional changes to cellular physiology in oxidative stress-exposed Aspergillus nidulans cultures provides the opportunity to estimate the sizes of peroxide (O2(2-)), superoxide (O2*-) and glutathione/glutathione disulphide (GSH/GSSG) redox imbalance responses. RESULTS: Genome-wide transcriptional changes triggered by diamide, H2O2 and menadione in A. nidulans vegetative tissues were recorded using DNA microarrays containing 3533 unique PCR-amplified probes. Evaluation of LOESS-normalized data indicated that 2499 gene probes were affected by at least one stress-inducing agent. The stress induced by diamide and H2O2 were pulse-like, with recovery after 1 h exposure time while no recovery was observed with menadione. The distribution of stress-responsive gene probes among major physiological functional categories was approximately the same for each agent. The gene group sizes solely responsive to changes in intracellular O2(2-), O2*- concentrations or to GSH/GSSG redox imbalance were estimated at 7.7, 32.6 and 13.0 %, respectively. Gene groups responsive to diamide, H2O2 and menadione treatments and gene groups influenced by GSH/GSSG, O2(2-) and O2*- were only partly overlapping with distinct enrichment profiles within functional categories. Changes in the GSH/GSSG redox state influenced expression of genes coding for PBS2 like MAPK kinase homologue, PSK2 kinase homologue, AtfA transcription factor, and many elements of ubiquitin tagging, cell division cycle regulators, translation machinery proteins, defense and stress proteins, transport proteins as well as many enzymes of the primary and secondary metabolisms. Meanwhile, a separate set of genes encoding transport proteins, CpcA and JlbA amino acid starvation-responsive transcription factors, and some elements of sexual development and sporulation was ROS responsive. CONCLUSION: The existence of separate O2(2-), O2*- and GSH/GSSG responsive gene groups in a eukaryotic genome has been demonstrated. Oxidant-triggered, genome-wide transcriptional changes should be analyzed considering changes in oxidative stress-responsive physiological conditions and not correlating them directly to the chemistry and concentrations of the oxidative stress-inducing agent.


Assuntos
Aspergillus nidulans/genética , Diamida/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genoma Fúngico , Peróxido de Hidrogênio/farmacologia , Transcrição Gênica/efeitos dos fármacos , Vitamina K 3/farmacologia , Aspergillus nidulans/efeitos dos fármacos , Aspergillus nidulans/fisiologia , Glutationa/farmacologia , Dissulfeto de Glutationa/farmacologia , Cinética
6.
Antimicrob Agents Chemother ; 49(6): 2445-53, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15917545

RESUMO

The small, basic, and cysteine-rich antifungal protein PAF is abundantly secreted into the supernatant by the beta-lactam producer Penicillium chrysogenum. PAF inhibits the growth of various important plant and zoopathogenic filamentous fungi. Previous studies revealed the active internalization of the antifungal protein and the induction of multifactorial detrimental effects, which finally resulted in morphological changes and growth inhibition in target fungi. In the present study, we offer detailed insights into the mechanism of action of PAF and give evidence for the induction of a programmed cell death-like phenotype. We proved the hyperpolarization of the plasma membrane in PAF-treated Aspergillus nidulans hyphae by using the aminonaphtylethenylpyridinium dye di-8-ANEPPS. The exposure of phosphatidylserine on the surface of A. nidulans protoplasts by Annexin V staining and the detection of DNA strand breaks by TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) gave evidence for a PAF-induced apoptotic-like mechanism in A. nidulans. The localization of reactive oxygen species (ROS) by dichlorodihydrofluorescein diacetate and the abnormal cellular ultrastructure analyzed by transmission electron microscopy suggested that ROS-elicited membrane damage and the disintegration of mitochondria played a major role in the cytotoxicity of PAF. Finally, the reduced PAF sensitivity of A. nidulans strain FGSC1053, which carries a dominant-interfering mutation in fadA, supported our assumption that G-protein signaling was involved in PAF-mediated toxicity.


Assuntos
Antifúngicos/farmacologia , Apoptose , Aspergillus nidulans/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Proteínas Fúngicas/farmacologia , Antifúngicos/toxicidade , Aspergillus nidulans/ultraestrutura , Membrana Celular/ultraestrutura , Permeabilidade da Membrana Celular , Proteínas Fúngicas/toxicidade , Proteínas de Ligação ao GTP/metabolismo , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Penicillium , Penicillium chrysogenum/metabolismo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA