Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 44(3): 320-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26714763

RESUMO

Although the metabolism and disposition of diclofenac (DF) has been studied extensively, information regarding the plasma levels of its acyl-ß-d-glucuronide (DF-AG), a major metabolite, in human subjects is limited. Therefore, DF-AG concentrations were determined in plasma (acidified blood derived) of six healthy volunteers following a single oral DF dose (50 mg). Levels of DF-AG in plasma were high, as reflected by a DF-AG/DF ratio of 0.62 ± 0.21 (Cmax mean ± S.D.) and 0.84 ± 0.21 (area under the concentration-time curve mean ± S.D.). Both DF and DF-AG were also studied as substrates of different human drug transporters in vitro. DF was identified as a substrate of organic anion transporter (OAT) 2 only (Km = 46.8 µM). In contrast, DF-AG was identified as a substrate of numerous OATs (Km = 8.6, 60.2, 103.9, and 112 µM for OAT2, OAT1, OAT4, and OAT3, respectively), two organic anion-transporting polypeptides (OATP1B1, Km = 34 µM; OATP2B1, Km = 105 µM), breast cancer resistance protein (Km = 152 µM), and two multidrug resistance proteins (MRP2, Km = 145 µM; MRP3, Km = 196 µM). It is concluded that the disposition of DF-AG, once formed, can be mediated by various candidate transporters known to be expressed in the kidney (basolateral, OAT1, OAT2, and OAT3; apical, MRP2, BCRP, and OAT4) and liver (canalicular, MRP2 and BCRP; basolateral, OATP1B1, OATP2B1, OAT2, and MRP3). DF-AG is unstable in plasma and undergoes conversion to parent DF. Therefore, caution is warranted when assessing renal and hepatic transporter-mediated drug-drug interactions with DF and DF-AG.


Assuntos
Transporte Biológico/fisiologia , Diclofenaco/metabolismo , Glucuronídeos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adulto , Interações Medicamentosas/fisiologia , Humanos , Rim/metabolismo , Fígado/metabolismo , Masculino , Proteínas de Neoplasias/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA