Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(3): e0283042, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36943854

RESUMO

Environment stress is a major threat to the existence of coral reefs and has generated a lot of interest in the coral research community. Under the environmental stress, corals can experience tissue loss and/or the breakdown of symbiosis between the cnidarian host and its symbiotic algae causing the coral tissue to appear white as the skeleton can be seen by transparency. Image analysis is a common method used to assess tissue response under the environmental stress. However, the traditional approach is limited by the dynamic nature of the coral-algae symbiosis. Here, we observed coral tissue response in the scleractinian coral, Montipora capricornis, using high frequency image analysis throughout the experiment, as opposed to the typical start/end point assessment method. Color analysis reveals that the process can be divided into five stages with two critical stages according to coral tissue morphology and color ratio. We further explore changes to the morphology of individual polyps by means of the Pearson correlation coefficient and recurrence plots, where the quasi-periodic and nonstationary dynamics can be identified. The recurrence quantification analysis also allows the comparison between the different polyps. Our research provides a detailed visual and mathematical analysis of coral tissue response to environmental stress, which potentially shows universal applicability. Moreover, our approach provides a robust quantitative advancement for improving our insight into a suite of biotic responses in the perspective of coral health evaluation and fate prediction.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Projetos Piloto , Recifes de Corais , Estresse Fisiológico , Simbiose/fisiologia
2.
Gigascience ; 112022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352542

RESUMO

BACKGROUND: Coral reefs house about 25% of marine biodiversity and are critical for the livelihood of many communities by providing food, tourism revenue, and protection from wave surge. These magnificent ecosystems are under existential threat from anthropogenic climate change. Whereas extensive ecological and physiological studies have addressed coral response to environmental stress, high-quality reference genome data are lacking for many of these species. The latter issue hinders efforts to understand the genetic basis of stress resistance and to design informed coral conservation strategies. RESULTS: We report genome assemblies from 4 key Hawaiian coral species, Montipora capitata, Pocillopora acuta, Pocillopora meandrina, and Porites compressa. These species, or members of these genera, are distributed worldwide and therefore of broad scientific and ecological importance. For M. capitata, an initial assembly was generated from short-read Illumina and long-read PacBio data, which was then scaffolded into 14 putative chromosomes using Omni-C sequencing. For P. acuta, P. meandrina, and P. compressa, high-quality assemblies were generated using short-read Illumina and long-read PacBio data. The P. acuta assembly is from a triploid individual, making it the first reference genome of a nondiploid coral animal. CONCLUSIONS: These assemblies are significant improvements over available data and provide invaluable resources for supporting multiomics studies into coral biology, not just in Hawai'i but also in other regions, where related species exist. The P. acuta assembly provides a platform for studying polyploidy in corals and its role in genome evolution and stress adaptation in these organisms.


Assuntos
Antozoários , Animais , Antozoários/genética , Havaí , Ecossistema , Recifes de Corais , Genoma
3.
Mol Ecol ; 31(19): 5005-5023, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35947503

RESUMO

Sublethal exposure to environmental challenges may enhance ability to cope with chronic or repeated change, a process known as priming. In a previous study, pre-exposure to seawater enriched with pCO2 improved growth and reduced antioxidant capacity of juvenile Pacific geoduck Panopea generosa clams, suggesting that transcriptional shifts may drive phenotypic modifications post-priming. To this end, juvenile clams were sampled and TagSeq gene expression data were analysed after (i) a 110-day acclimation under ambient (921 µatm, naïve) and moderately elevated pCO2 (2870 µatm, pre-exposed); then following (ii) a second 7-day exposure to three pCO2 treatments (ambient: 754 µatm; moderately elevated: 2750 µatm; severely elevated: 4940 µatm), a 7-day return to ambient pCO2 and a third 7-day exposure to two pCO2 treatments (ambient: 967 µatm; moderately elevated: 3030 µatm). Pre-exposed geoducks frontloaded genes for stress and apoptosis/innate immune response, homeostatic processes, protein degradation and transcriptional modifiers. Pre-exposed geoducks were also responsive to subsequent encounters, with gene sets enriched for mitochondrial recycling and immune defence under elevated pCO2 and energy metabolism and biosynthesis under ambient recovery. In contrast, gene sets with higher expression in naïve clams were enriched for fatty-acid degradation and glutathione components, suggesting naïve clams could be depleting endogenous fuels, with unsustainable energetic requirements if changes in carbonate chemistry persist. Collectively, our transcriptomic data indicate that pCO2 priming during post-larval periods could, via gene expression regulation, enhance robustness in bivalves to environmental change. Such priming approaches may be beneficial for aquaculture, as seafood demand intensifies concurrent with increasing climate change in marine systems.


Assuntos
Bivalves , Dióxido de Carbono , Aclimatação/genética , Animais , Antioxidantes , Bivalves/genética , Expressão Gênica , Glutationa , Concentração de Íons de Hidrogênio , Água do Mar
4.
Proc Biol Sci ; 288(1953): 20210328, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34157872

RESUMO

With coral reefs declining globally, resilience of these ecosystems hinges on successful coral recruitment. However, knowledge of the acclimatory and/or adaptive potential in response to environmental challenges such as ocean acidification (OA) in earliest life stages is limited. Our combination of physiological measurements, microscopy, computed tomography techniques and gene expression analysis allowed us to thoroughly elucidate the mechanisms underlying the response of early-life stages of corals, together with their algal partners, to the projected decline in oceanic pH. We observed extensive physiological, morphological and transcriptional changes in surviving recruits, and the transition to a less-skeleton/more-tissue phenotype. We found that decreased pH conditions stimulate photosynthesis and endosymbiont growth, and gene expression potentially linked to photosynthates translocation. Our unique holistic study discloses the previously unseen intricate net of interacting mechanisms that regulate the performance of these organisms in response to OA.


Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Ecossistema , Concentração de Íons de Hidrogênio , Oceanos e Mares , Água do Mar
5.
PLoS One ; 16(4): e0248953, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33831033

RESUMO

Model systems approaches search for commonality in patterns underlying biological diversity and complexity led by common evolutionary paths. The success of the approach does not rest on the species chosen but on the scalability of the model and methods used to develop the model and engage research. Fine-tuning approaches to improve coral cell cultures will provide a robust platform for studying symbiosis breakdown, the calcification mechanism and its disruption, protein interactions, micronutrient transport/exchange, and the toxicity of nanoparticles, among other key biological aspects, with the added advantage of minimizing the ethical conundrum of repeated testing on ecologically threatened organisms. The work presented here aimed to lay the foundation towards development of effective methods to sort and culture reef-building coral cells with the ultimate goal of obtaining immortal cell lines for the study of bleaching, disease and toxicity at the cellular and polyp levels. To achieve this objective, the team conducted a thorough review and tested the available methods (i.e. cell dissociation, isolation, sorting, attachment and proliferation). The most effective and reproducible techniques were combined to consolidate culture methods and generate uncontaminated coral cell cultures for ~7 days (10 days maximum). The tests were conducted on scleractinian corals Pocillopora acuta of the same genotype to harmonize results and reduce variation linked to genetic diversity. The development of cell separation and identification methods in conjunction with further investigations into coral cell-type specific metabolic requirements will allow us to tailor growth media for optimized monocultures as a tool for studying essential reef-building coral traits such as symbiosis, wound healing and calcification at multiple scales.


Assuntos
Antozoários/crescimento & desenvolvimento , Técnicas de Cultura de Células/métodos , Animais
6.
Sci Rep ; 10(1): 13664, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32788607

RESUMO

The persistence of reef building corals is threatened by human-induced environmental change. Maintaining coral reefs into the future requires not only the survival of adults, but also the influx of recruits to promote genetic diversity and retain cover following adult mortality. Few studies examine the linkages among multiple life stages of corals, despite a growing knowledge of carryover effects in other systems. We provide a novel test of coral parental conditioning to ocean acidification (OA) and tracking of offspring for 6 months post-release to better understand parental or developmental priming impacts on the processes of offspring recruitment and growth. Coral planulation was tracked for 3 months following adult exposure to high pCO2 and offspring from the second month were reciprocally exposed to ambient and high pCO2 for an additional 6 months. Offspring of parents exposed to high pCO2 had greater settlement and survivorship immediately following release, retained survivorship benefits during 1 and 6 months of continued exposure, and further displayed growth benefits to at least 1 month post release. Enhanced performance of offspring from parents exposed to high conditions was maintained despite the survivorship in both treatments declining in continued exposure to OA. Conditioning of the adults while they brood their larvae, or developmental acclimation of the larvae inside the adult polyps, may provide a form of hormetic conditioning, or environmental priming that elicits stimulatory effects. Defining mechanisms of positive acclimatization, with potential implications for carry over effects, cross-generational plasticity, and multi-generational plasticity, is critical to better understanding ecological and evolutionary dynamics of corals under regimes of increasing environmental disturbance. Considering environmentally-induced parental or developmental legacies in ecological and evolutionary projections may better account for coral reef response to the chronic stress regimes characteristic of climate change.


Assuntos
Adaptação Fisiológica , Antozoários/crescimento & desenvolvimento , Ecologia , Meio Ambiente , Larva/crescimento & desenvolvimento , Animais , Dióxido de Carbono/análise , Mudança Climática , Concentração de Íons de Hidrogênio , Água do Mar/química
7.
Curr Biol ; 27(11): R528-R540, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28586690

RESUMO

Reef-building corals provide the foundation for the structural and biological diversity of coral-reef ecosystems. These massive biological structures, which can be seen from space, are the culmination of complex interactions between the tiny polyps of the coral animal in concert with its unicellular symbiotic algae and a wide diversity of closely associated microorganisms (bacteria, archaea, fungi, and viruses). While reef-building corals have persisted in various forms for over 200 million years, human-induced conditions threaten their function and persistence. The scope for loss associated with the destruction of coral reef systems is economically, biologically, physically and culturally immense. Here, we provide a micro-to-macro perspective on the biology of scleractinian corals and discuss how cellular processes of the host and symbionts potentially affect the response of these reef builders to the wide variety of both natural and anthropogenic stressors encountered by corals in the Anthropocene. We argue that the internal physicochemical settings matter to both the performance of the host and microbiome, as bio-physical feedbacks may enhance stress tolerance through environmentally mediated host priming and effects on microbiome ecological and evolutionary dynamics.


Assuntos
Antozoários/fisiologia , Recifes de Corais , Recuperação e Remediação Ambiental , Microbiota/fisiologia , Simbiose/fisiologia , Aclimatação , Animais , Antozoários/microbiologia , Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos , Biodiversidade , Evolução Biológica , Poluição Ambiental/efeitos adversos , Humanos
8.
PeerJ ; 5: e3319, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28533967

RESUMO

We investigated intra- and inter-colony sequence variation in a population of the dominant Hawaiian coral Montipora capitata by analyzing marker gene and genomic data. Ribosomal ITS1 regions showed evidence of a reticulate history among the colonies, suggesting incomplete rDNA repeat homogenization. Analysis of the mitochondrial genome identified a major (M. capitata) and a minor (M. flabellata) haplotype in single polyp-derived sperm bundle DNA with some colonies containing 2-3 different mtDNA haplotypes. In contrast, Pax-C and newly identified single-copy nuclear genes showed either no sequence differences or minor variations in SNP frequencies segregating among the colonies. Our data suggest past mitochondrial introgression in M. capitata, whereas nuclear single-copy loci show limited variation, highlighting the divergent evolutionary histories of these coral DNA markers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA