Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Comput Assist Radiol Surg ; 16(3): 423-434, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33532975

RESUMO

BACKGROUND: COVID-19 pandemic has currently no vaccines. Thus, the only feasible solution for prevention relies on the detection of COVID-19-positive cases through quick and accurate testing. Since artificial intelligence (AI) offers the powerful mechanism to automatically extract the tissue features and characterise the disease, we therefore hypothesise that AI-based strategies can provide quick detection and classification, especially for radiological computed tomography (CT) lung scans. METHODOLOGY: Six models, two traditional machine learning (ML)-based (k-NN and RF), two transfer learning (TL)-based (VGG19 and InceptionV3), and the last two were our custom-designed deep learning (DL) models (CNN and iCNN), were developed for classification between COVID pneumonia (CoP) and non-COVID pneumonia (NCoP). K10 cross-validation (90% training: 10% testing) protocol on an Italian cohort of 100 CoP and 30 NCoP patients was used for performance evaluation and bispectrum analysis for CT lung characterisation. RESULTS: Using K10 protocol, our results showed the accuracy in the order of DL > TL > ML, ranging the six accuracies for k-NN, RF, VGG19, IV3, CNN, iCNN as 74.58 ± 2.44%, 96.84 ± 2.6, 94.84 ± 2.85%, 99.53 ± 0.75%, 99.53 ± 1.05%, and 99.69 ± 0.66%, respectively. The corresponding AUCs were 0.74, 0.94, 0.96, 0.99, 0.99, and 0.99 (p-values < 0.0001), respectively. Our Bispectrum-based characterisation system suggested CoP can be separated against NCoP using AI models. COVID risk severity stratification also showed a high correlation of 0.7270 (p < 0.0001) with clinical scores such as ground-glass opacities (GGO), further validating our AI models. CONCLUSIONS: We prove our hypothesis by demonstrating that all the six AI models successfully classified CoP against NCoP due to the strong presence of contrasting features such as ground-glass opacities (GGO), consolidations, and pleural effusion in CoP patients. Further, our online system takes < 2 s for inference.


Assuntos
Inteligência Artificial , COVID-19/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Pneumonia/diagnóstico por imagem , Aprendizado Profundo , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2 , Tomografia Computadorizada por Raios X/métodos
2.
Int Angiol ; 39(4): 290-306, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32214072

RESUMO

BACKGROUND: Recently, a 10-year image-based integrated calculator (called AtheroEdge Composite Risk Score-AECRS1.0) was developed which combines conventional cardiovascular risk factors (CCVRF) with image phenotypes derived from carotid ultrasound (CUS). Such calculators did not include chronic kidney disease (CKD)-based biomarker called estimated glomerular filtration rate (eGFR). The novelty of this study is to design and develop an advanced integrated version called-AECRS2.0 that combines eGFR with image phenotypes to compute the composite risk score. Furthermore, AECRS2.0 was benchmarked against QRISK3 which considers eGFR for risk assessment. METHODS: The method consists of three major steps: 1) five, current CUS image phenotypes (CUSIP) measurements using AtheroEdge system (AtheroPoint, CA, USA) consisting of: average carotid intima-media thickness (cIMTave), maximum cIMT (cIMTmax), minimum cIMT (cIMTmin), variability in cIMT (cIMTV), and total plaque area (TPA); 2) five, 10-year CUSIP measurements by combining these current five CUSIP with 11 CCVRF (age, ethnicity, gender, body mass index, systolic blood pressure, smoking, carotid artery type, hemoglobin, low-density lipoprotein cholesterol, total cholesterol, and eGFR); 3) AECRS2.0 risk score computation and its comparison to QRISK3 using area-under-the-curve (AUC). RESULTS: South Asian-Indian 339 patients were retrospectively analyzed by acquiring their left/right common carotid arteries (678 CUS, mean age: 54.25±9.84 years; 75.22% males; 93.51% diabetic with HbA1c ≥6.5%; and mean eGFR 73.84±20.91 mL/min/1.73m2). The proposed AECRS2.0 reported higher AUC (AUC=0.89, P<0.001) compared to QRISK3 (AUC=0.51, P<0.001) by ~74% in CKD patients. CONCLUSIONS: An integrated calculator AECRS2.0 can be used to assess the 10-year CVD/stroke risk in patients suffering from CKD. AECRS2.0 was much superior to QRISK3.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus , Insuficiência Renal Crônica , Acidente Vascular Cerebral , Biomarcadores , Doenças Cardiovasculares/diagnóstico por imagem , Espessura Intima-Media Carotídea , Feminino , Taxa de Filtração Glomerular , Humanos , Masculino , Pessoa de Meia-Idade , Insuficiência Renal Crônica/diagnóstico , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA