Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 44(1): 290-299, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37970718

RESUMO

BACKGROUND: Despite the ubiquitous utilization of central venous catheters in clinical practice, their use commonly provokes thromboembolism. No prophylactic strategy has shown sufficient efficacy to justify routine use. Coagulation factors FXI (factor XI) and FXII (factor XII) represent novel targets for device-associated thrombosis, which may mitigate bleeding risk. Our objective was to evaluate the safety and efficacy of an anti-FXI mAb (monoclonal antibody), gruticibart (AB023), in a prospective, single-arm study of patients with cancer receiving central line placement. METHODS: We enrolled ambulatory cancer patients undergoing central line placement to receive a single dose of gruticibart (2 mg/kg) administered through the venous catheter within 24 hours of placement and a follow-up surveillance ultrasound at day 14 for evaluation of catheter thrombosis. A parallel, noninterventional study was used as a comparator. RESULTS: In total, 22 subjects (n=11 per study) were enrolled. The overall incidence of catheter-associated thrombosis was 12.5% in the interventional study and 40.0% in the control study. The anti-FXI mAb, gruticibart, significantly prolonged the activated partial thromboplastin time in all subjects on day 14 compared with baseline (P<0.001). Gruticibart was well tolerated and without infusion reactions, drug-related adverse events, or clinically relevant bleeding. Platelet flow cytometry demonstrated no difference in platelet activation following administration of gruticibart. T (thrombin)-AT (antithrombin) and activated FXI-AT complexes increased following central line placement in the control study, which was not demonstrated in our intervention study. CRP (C-reactive protein) did not significantly increase on day 14 in those who received gruticibart, but it did significantly increase in the noninterventional study. CONCLUSIONS: FXI inhibition with gruticibart was well tolerated without any significant adverse or bleeding-related events and resulted in a lower incidence of catheter-associated thrombosis on surveillance ultrasound compared with the published literature and our internal control study. These findings suggest that targeting FXI could represent a safe intervention to prevent catheter thrombosis. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04465760.


Assuntos
Neoplasias , Trombose , Humanos , Fator XI/metabolismo , Estudos Prospectivos , Trombose/etiologia , Trombose/prevenção & controle , Trombose/tratamento farmacológico , Hemorragia/induzido quimicamente , Catéteres/efeitos adversos , Neoplasias/tratamento farmacológico , Neoplasias/complicações
2.
J Immunol ; 206(8): 1784-1792, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33811105

RESUMO

Complement factor H (CFH) is the major inhibitor of the alternative pathway of the complement system and is structurally related to beta2-glycoprotein I, which itself is known to bind to ligands, including coagulation factor XI (FXI). We observed reduced complement activation when FXI activation was inhibited in a baboon model of lethal systemic inflammation, suggesting cross-talk between FXI and the complement cascade. It is unknown whether FXI or its activated form, activated FXI (FXIa), directly interacts with the complement system. We explored whether FXI could interact with and inhibit the activity of CFH. We found that FXIa neutralized CFH by cleavage of the R341/R342 bonds. FXIa reduced the capacity of CFH to enhance the cleavage of C3b by factor I and the decay of C3bBb. The binding of CFH to human endothelial cells was also reduced after incubating CFH with FXIa. The addition of either short- or long-chain polyphosphate enhanced the capacity of FXIa to cleave CFH. FXIa also cleaved CFH that was present on endothelial cells and in the secretome from blood platelets. The generation of FXIa in plasma induced the cleavage of CFH. Moreover, FXIa reduced the cleavage of C3b by factor I in serum. Conversely, we observed that CFH inhibited FXI activation by either thrombin or FXIIa. Our study provides, to our knowledge, a novel molecular link between the contact pathway of coagulation and the complement system. These results suggest that FXIa generation enhances the activity of the complement system and thus may potentiate the immune response.


Assuntos
Plaquetas/metabolismo , Fator H do Complemento/metabolismo , Células Endoteliais/metabolismo , Fator XIa/metabolismo , Inflamação/metabolismo , Animais , Coagulação Sanguínea , Complemento C3b/metabolismo , Via Alternativa do Complemento , Fibrinogênio/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Papio , Ligação Proteica , Receptor Cross-Talk
3.
Blood ; 138(2): 178-189, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33598692

RESUMO

Activation of coagulation factor (F) XI promotes multiorgan failure in rodent models of sepsis and in a baboon model of lethal systemic inflammation induced by infusion of heat-inactivated Staphylococcus aureus. Here we used the anticoagulant FXII-neutralizing antibody 5C12 to verify the mechanistic role of FXII in this baboon model. Compared with untreated control animals, repeated 5C12 administration before and at 8 and 24 hours after bacterial challenge prevented the dramatic increase in circulating complexes of contact system enzymes FXIIa, FXIa, and kallikrein with antithrombin or C1 inhibitor, and prevented cleavage and consumption of high-molecular-weight kininogen. Activation of several coagulation factors and fibrinolytic enzymes was also prevented. D-dimer levels exhibited a profound increase in the untreated animals but not in the treated animals. The antibody also blocked the increase in plasma biomarkers of inflammation and cell damage, including tumor necrosis factor, interleukin (IL)-1ß, IL-6, IL-8, IL-10, granulocyte-macrophage colony-stimulating factor, nucleosomes, and myeloperoxidase. Based on clinical presentation and circulating biomarkers, inhibition of FXII prevented fever, terminal hypotension, respiratory distress, and multiorgan failure. All animals receiving 5C12 had milder and transient clinical symptoms and were asymptomatic at day 7, whereas untreated control animals suffered irreversible multiorgan failure and had to be euthanized within 2 days after the bacterial challenge. This study confirms and extends our previous finding that at least 2 enzymes of the contact activation complex, FXIa and FXIIa, play critical roles in the development of an acute and terminal inflammatory response in baboons challenged with heat-inactivated S aureus.


Assuntos
Fator XII/metabolismo , Insuficiência de Múltiplos Órgãos/metabolismo , Insuficiência de Múltiplos Órgãos/microbiologia , Staphylococcus aureus/fisiologia , Animais , Anticorpos/uso terapêutico , Transtornos da Coagulação Sanguínea/complicações , Transtornos da Coagulação Sanguínea/imunologia , Transtornos da Coagulação Sanguínea/microbiologia , Plaquetas/metabolismo , Microambiente Celular , Ativação do Complemento , Fator XII/imunologia , Feminino , Fibrinogênio/metabolismo , Temperatura Alta , Inflamação/complicações , Inflamação/patologia , Masculino , Insuficiência de Múltiplos Órgãos/imunologia , Papio , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Análise de Sobrevida
4.
Cardiovasc Eng Technol ; 11(4): 448-455, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32607901

RESUMO

PURPOSE: Crosslinked poly(vinyl alcohol) (PVA) is a biomaterial that can be used for multiple cardiovascular applications. The success of implanted biomaterials is contingent on the properties of the material. A crucial consideration for blood-contacting devices is their potential to incite thrombus formation, which is dependent on the material surface properties. The goal of this study was to quantify the effect of different crosslinking methods of PVA hydrogels on in vitro thrombogenicity. METHODS: PVA was manufactured using three different crosslinking methods: 30% sodium trimetaphosphate (STMP), three 24 h freeze-thaw cycles (FT), and 2% glutaraldehyde-crosslinked (GA) to produce STMP-PVA, FT-PVA and GA-PVA, respectively. Expanded polytetrafluoroethylene (ePTFE) was used as a clinical control. As markers of thrombus formation, the degree of coagulation factor (F) XII activation, fibrin formation, and platelet adhesion were measured. RESULTS: The GA-PVA material increased FXII activation in the presence of cofactors compared to vehicle and increase platelet adhesion compared to other PVA surfaces. The STMP-PVA and FT-PVA materials had equivalent degrees of FXII activation, fibrin formation and platelet adhesion. CONCLUSION: This work supports crosslinker dependent thrombogenicity of PVA hydrogels and advances our understanding of how the manufacturing of a PVA hydrogel affects its hemocompatibility.


Assuntos
Reagentes de Ligações Cruzadas/química , Congelamento , Glutaral/química , Polifosfatos/química , Álcool de Polivinil/química , Trombose/prevenção & controle , Materiais Biocompatíveis , Coagulação Sanguínea , Prótese Vascular , Reagentes de Ligações Cruzadas/toxicidade , Fator XIIa/metabolismo , Fibrinólise , Congelamento/efeitos adversos , Glutaral/toxicidade , Oclusão de Enxerto Vascular/sangue , Oclusão de Enxerto Vascular/etiologia , Oclusão de Enxerto Vascular/prevenção & controle , Humanos , Hidrogéis , Teste de Materiais , Adesividade Plaquetária , Polifosfatos/toxicidade , Álcool de Polivinil/toxicidade , Desenho de Prótese , Propriedades de Superfície , Trombose/sangue , Trombose/etiologia
5.
Arterioscler Thromb Vasc Biol ; 38(8): 1748-1760, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30354195

RESUMO

Objective- Terminal complications of bacterial sepsis include development of disseminated intravascular consumptive coagulopathy. Bacterial constituents, including long-chain polyphosphates (polyP), have been shown to activate the contact pathway of coagulation in plasma. Recent work shows that activation of the contact pathway in flowing whole blood promotes thrombin generation and platelet activation and consumption distal to thrombus formation ex vivo and in vivo. Here, we sought to determine whether presence of long-chain polyP or bacteria in the bloodstream promotes platelet activation and consumption in a coagulation factor (F)XII-dependent manner. Approach and Results- Long-chain polyP promoted platelet P-selectin expression, microaggregate formation, and platelet consumption in flowing whole blood in a contact activation pathway-dependent manner. Moreover, long-chain polyP promoted local fibrin formation on collagen under shear flow in a FXI-dependent manner. Distal to the site of thrombus formation, platelet consumption was dramatically enhanced in the presence of long-chain polyP in the blood flow in a FXI- and FXII-dependent manner. In a murine model, long-chain polyP promoted platelet deposition and fibrin generation in lungs in a FXII-dependent manner. In a nonhuman primate model of bacterial sepsis, pre-treatment of animals with an antibody blocking FXI activation by FXIIa reduced lethal dose100 Staphylococcus aureus-induced platelet and fibrinogen consumption. Conclusions- This study demonstrates that bacterial-type long-chain polyP promotes platelet activation in a FXII-dependent manner in flowing blood, which may contribute to sepsis-associated thrombotic processes, consumptive coagulopathy, and thrombocytopenia.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Fator XII/metabolismo , Fator XIIa/metabolismo , Ativação Plaquetária/efeitos dos fármacos , Polifosfatos/toxicidade , Trombose/induzido quimicamente , Animais , Plaquetas/metabolismo , Modelos Animais de Doenças , Fator XII/genética , Fator XIIa/genética , Feminino , Fibrina/metabolismo , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Papio ursinus , Pré-Calicreína/genética , Pré-Calicreína/metabolismo , Embolia Pulmonar/sangue , Embolia Pulmonar/induzido quimicamente , Embolia Pulmonar/genética , Sepse/sangue , Sepse/microbiologia , Transdução de Sinais/efeitos dos fármacos , Infecções Estafilocócicas/sangue , Infecções Estafilocócicas/microbiologia , Trombose/sangue , Trombose/genética , Calicreínas Teciduais/genética , Calicreínas Teciduais/metabolismo
6.
Ann Biomed Eng ; 45(5): 1328-1340, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27933406

RESUMO

In the contact activation pathway of the coagulation, zymogen factor XII (FXII) is converted to FXIIa, which triggers activation of FXI leading to the activation of FIX and subsequent thrombin generation and fibrin formation. Feedback activation of FXI by thrombin has been shown to promote thrombin generation in a FXII-independent manner and FXIIa can bypass FXI to directly activate FX and prothrombin in the presence of highly negatively charged molecules, such as long-chain polyphosphates (LC polyP). We sought to determine whether activation of FXII or FXI differentially regulate the physical biology of fibrin formation. Fibrin formation was initiated with tissue factor, ellagic acid (EA), or LC polyP in the presence of inhibitors of FXI and FXII. Our data demonstrated that inhibition of FXI decreased the rate of fibrin formation and fiber network density, and increased the fibrin network strength and rate of fibrinolysis when gelation was initiated via the contact activation pathway with EA. FXII inhibition decreased the fibrin formation and fibrin density, and increased the fibrinolysis rate only when fibrin formation was initiated via the contact activation pathway with LC polyP. Overall, we demonstrate that inhibition of FXI and FXII distinctly alter the biophysical properties of fibrin.


Assuntos
Inibidores dos Fatores de Coagulação Sanguínea/química , Fator XII , Fator XI , Fibrina/química , Fibrinólise , Fator XI/antagonistas & inibidores , Fator XI/química , Fator XII/antagonistas & inibidores , Fator XII/química , Humanos , Polifosfatos/química
7.
PLoS One ; 11(10): e0165172, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27764259

RESUMO

INTRODUCTION: Factor (F) XI supports both normal human hemostasis and pathological thrombosis. Activated FXI (FXIa) promotes thrombin generation by enzymatic activation of FXI, FIX, FX, and FV, and inactivation of alpha tissue factor pathway inhibitor (TFPIα), in vitro. Some of these reactions are now known to be enhanced by short-chain polyphosphates (SCP) derived from activated platelets. These SCPs act as a cofactor for the activation of FXI and FV by thrombin and FXIa, respectively. Since SCPs have been shown to inhibit the anticoagulant function of TFPIα, we herein investigated whether SCPs could serve as cofactors for the proteolytic inactivation of TFPIα by FXIa, further promoting the efficiency of the extrinsic pathway of coagulation to generate thrombin. METHODS AND RESULTS: Purified soluble SCP was prepared by size-fractionation of sodium polyphosphate. TFPIα proteolysis was analyzed by western blot. TFPIα activity was measured as inhibition of FX activation and activity in coagulation and chromogenic assays. SCPs significantly accelerated the rate of inactivation of TFPIα by FXIa in both purified systems and in recalcified plasma. Moreover, platelet-derived SCP accelerated the rate of inactivation of platelet-derived TFPIα by FXIa. TFPIα activity was not affected by SCP in recalcified FXI-depleted plasma. CONCLUSIONS: Our data suggest that SCP is a cofactor for TFPIα inactivation by FXIa, thus, expanding the range of hemostatic FXIa substrates that may be affected by the cofactor functions of platelet-derived SCP.


Assuntos
Plaquetas/metabolismo , Fator XIa/metabolismo , Lipoproteínas/metabolismo , Polifosfatos/metabolismo , Fator VIIa/metabolismo , Humanos , Cinética , Lipoproteínas/antagonistas & inibidores , Polifosfatos/química , Polifosfatos/isolamento & purificação , Ligação Proteica , Tromboplastina/metabolismo , Zinco/química
8.
Thromb Res ; 141 Suppl 2: S8-S11, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27207433

RESUMO

Coagulation factor (F)XI has been described as a component of the early phase of the contact pathway of blood coagulation, acting downstream of factor XII. However, patients deficient in upstream members of the contact pathway, including FXII and prekallikrein, do not exhibit bleeding complications, while FXI-deficient patients sometimes experience mild bleeding, suggesting FXI plays a role in hemostasis independent of the contact pathway. Further complicating the picture, bleeding risk in FXI-deficient patients is difficult to predict because bleeding symptoms have not been found to correlate with FXI antigen levels or activity. However, recent studies have emerged to expand our understanding of FXI, demonstrating that activated FXI is able to activate coagulation factors FX, FV, and FVIII, and inhibit the anti-coagulant tissue factor pathway inhibitor (TFPI). Understanding these activities of FXI may help to better diagnose which FXI-deficient patients are at risk for bleeding. In contrast to its mild hemostatic activities, FXI is known to play a significant role in thrombosis, as it is a demonstrated independent risk factor for deep vein thrombosis, ischemic stroke, and myocardial infarction. Recent translational approaches have begun testing FXI as an antithrombotic, with one promising clinical study showing that an anti-sense oligonucleotide against FXI prevented venous thrombosis in elective knee surgery. A better understanding of the varied and complex role of FXI in both thrombosis and hemostasis will help to allow better prediction of bleeding risk in FXI-deficient patients and also informing the development of targeted agents to inhibit the thrombotic activities of FXI while preserving hemostasis.


Assuntos
Fator XI/metabolismo , Hemostasia , Trombose/metabolismo , Animais , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico , Coagulação Sanguínea/efeitos dos fármacos , Descoberta de Drogas , Deficiência do Fator XI/sangue , Deficiência do Fator XI/complicações , Deficiência do Fator XI/tratamento farmacológico , Deficiência do Fator XI/metabolismo , Hemorragia/sangue , Hemorragia/tratamento farmacológico , Hemorragia/etiologia , Hemorragia/metabolismo , Hemostasia/efeitos dos fármacos , Humanos , Trombose/sangue , Trombose/tratamento farmacológico
9.
Thromb Haemost ; 107(5): 815-26, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22318610

RESUMO

In the last decade, the endothelial cell protein C/activated protein C receptor (EPCR) has received considerable attention. The role initially attributed to EPCR, i.e. the enhancement of protein C (PC) activation by the thrombin-thrombomodulin complex on the surface of the large vessels, although important, did not go beyond the haemostasis scenario. However, the discovery of the cytoprotective, anti-inflammatory and anti-apoptotic features of the activated PC (APC) and the required involvement of EPCR for APC to exert such actions did place the receptor in a privileged position in the crosstalk between coagulation and inflammation. The last five years have shown that PC/APC are not the only molecules able to interact with EPCR. Factor VII/VIIa (FVII/VIIa) and factor Xa (FXa), two other serine proteases that play a central role in haemostasis and are also involved in signalling processes influencing wound healing, tissue remodelling, inflammation or metastasis, have been reported to bind to EPCR. These observations have paved the way for an exploration of unsuspected new roles for the receptor. This review aims to offer a new image of EPCR in the light of its extended panel of ligands. A brief update of what is known about the APC-evoked EPCR-dependent cell signalling mechanisms is provided, but special care has been taken to assemble all the information available about the interaction of EPCR with FVII/VIIa and FXa.


Assuntos
Antígenos CD/metabolismo , Endotélio Vascular/metabolismo , Proteína C/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Antígenos CD/química , Apoptose , Receptor de Proteína C Endotelial , Endotélio Vascular/imunologia , Endotélio Vascular/patologia , Fator VII/metabolismo , Fator X/metabolismo , Hemostasia , Humanos , Inflamação/sangue , Inflamação/metabolismo , Ligantes , Dados de Sequência Molecular , Proteína C/química , Conformação Proteica , Receptores de Superfície Celular/química , Relação Estrutura-Atividade
10.
Haematologica ; 93(6): 878-84, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18443268

RESUMO

BACKGROUND: A soluble form of endothelial cell protein C receptor (sEPCR) is generated by shedding of the cellular form. sEPCR binds to protein C and factor VIIa and inhibits both the activation of protein C and the activity of activated protein C and factor VIIa. High sEPCR levels may increase the risk of thrombosis. We wanted to explore the possibility of detecting soluble endothelial cell protein C receptor forms generated by alternative splicing. DESIGN AND METHODS: Reverse transcriptase polymerase chain reaction was used to look for new forms of endothelial cell protein C receptor. A yeast expression system was used to generate sufficient amounts of the distinct sEPCR forms. Surface plasmon resonance experiments, chromogenic assays, clotting assays and immunoassays were subsequently performed to characterize a new form of sEPCR that was found. RESULTS: We demonstrated, by reverse transcriptase polymerase chain reaction and sequencing, the existence of a new, soluble form of endothelial cell protein C receptor generated by alternative splicing, in which the transmembrane region is replaced by a 56-residue tail (tEPCR). Its cDNA was present in human umbilical vein endothelial cells and in most tissues as well as in lung cancer cells. tEPCR was not located in the membrane of transfected cells. We demonstrated that tEPCR binds to protein C and factor VIIa. tEPCR blocked the generation of activated protein C and inhibited the activity of both activated protein C and factor VIIa. tEPCR was detected, by immunoassays, in the supernatant of lung cancer cells and human umbilical vein endothelial cells. CONCLUSIONS: A truncated form of alternatively spliced endothelial cell protein C receptor was detected in the endothelium and cancer cells. tEPCR behaves as sEPCR generated by shedding of the cellular endothelial cell protein C receptor.


Assuntos
Processamento Alternativo , Fatores de Coagulação Sanguínea/química , Regulação da Expressão Gênica , Receptores de Superfície Celular/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Fatores de Coagulação Sanguínea/metabolismo , Endotélio Vascular/citologia , Fator VIIa/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Biológicos , Dados de Sequência Molecular , Proteína C/metabolismo , Receptores de Superfície Celular/metabolismo , Veias Umbilicais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA