Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37298337

RESUMO

Cancer and neurodegenerative disorders present overwhelming challenges for healthcare worldwide. Epidemiological studies showed a decrease in cancer rates in patients with neurodegenerative disorders, including the Huntington disease (HD). Apoptosis is one of the most important processes for both cancer and neurodegeneration. We suggest that genes closely connected with apoptosis and associated with HD may affect carcinogenesis. We applied reconstruction and analysis of gene networks associated with HD and apoptosis and identified potentially important genes for inverse comorbidity of cancer and HD. The top 10 high-priority candidate genes included APOE, PSEN1, INS, IL6, SQSTM1, SP1, HTT, LEP, HSPA4, and BDNF. Functional analysis of these genes was carried out using gene ontology and KEGG pathways. By exploring genome-wide association study results, we identified genes associated with neurodegenerative and oncological disorders, as well as their endophenotypes and risk factors. We used publicly available datasets of HD and breast and prostate cancers to analyze the expression of the identified genes. Functional modules of these genes were characterized according to disease-specific tissues. This integrative approach revealed that these genes predominantly exert similar functions in different tissues. Apoptosis along with lipid metabolism dysregulation and cell homeostasis maintenance in the response to environmental stimulus and drugs are likely key processes in inverse comorbidity of cancer in patients with HD. Overall, the identified genes represent the promising targets for studying molecular relations of cancer and HD.


Assuntos
Doença de Huntington , Neoplasias , Doenças Neurodegenerativas , Masculino , Humanos , Doença de Huntington/epidemiologia , Doença de Huntington/genética , Doença de Huntington/metabolismo , Estudo de Associação Genômica Ampla , Redes Reguladoras de Genes , Neoplasias/epidemiologia , Neoplasias/genética
2.
BMC Cardiovasc Disord ; 21(1): 566, 2021 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-34837967

RESUMO

BACKGROUND: Recent studies have focused on the potential role of epicardial adipose tissue (EAT) in the development of coronary artery disease (CAD). ABCA1 and ABCG1 transporters regulate cell cholesterol content and reverse cholesterol transport. We aimed to determine whether DNA methylation and mRNA levels of the ABCA1 and ABCG1 genes in EAT and subcutaneous adipose tissue (SAT) were associated with CAD. METHODS: Paired EAT and SAT samples were collected from 82 patients undergoing elective cardiac surgery either for coronary artery bypass grafting (CAD group, N = 66) or valve surgery (NCAD group, N = 16). ABCA1 and ABCG1 mRNA levels in EAT and SAT samples were analyzed using real time polymerase chain reaction, ABCA1 protein levels in EAT samples were assessed by western blotting. ABCA1 and ABCG1 DNA methylation analysis was performed in 24 samples from the CAD group and 9 samples from the NCAD group via pyrosequencing. RESULTS: DNA methylation levels in the ABCA1 promoter and ABCG1 cg27243685 and cg06500161 CpG sites were higher in EAT samples from patients with CAD compared with NCAD (21.92% vs 10.81%, p = 0.003; 71.51% vs 68.42%, p = 0.024; 46.11% vs 37.79%, p = 0.016, respectively). In patients with CAD, ABCA1 and ABCG1 DNA methylation levels were higher in EAT than in SAT samples (p < 0.05). ABCA1 mRNA levels in EAT samples were reduced in the subgroup of patients with CAD and concomitant carotid artery disease or peripheral artery disease compared with the NCAD group (p = 0.024). ABCA1 protein levels in EAT samples tended to be lower in CAD patients than in the NCAD group (p = 0.053). DNA methylation levels at the ABCG1 cg27243685 site positively correlated with plasma triglyceride concentration (r = 0.510, p = 0.008), body mass index (r = 0.556, p = 0.013) and waist-to-hip ratio (r = 0.504, p = 0.012) in SAT samples. CONCLUSION: CAD is associated with ABCA1 and ABCG1 DNA hypermethylation in EAT. CAD with concomitant carotid artery disease or peripheral artery disease is accompanied by decreased ABCA1 gene expression in EAT. DNA methylation levels at the ABCG1 cg27243685 locus in SAT are associated with hypertriglyceridemia and obesity.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Tecido Adiposo/metabolismo , Doença da Artéria Coronariana/genética , Metilação de DNA , Pericárdio/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adulto , Idoso , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/metabolismo , Ilhas de CpG , Feminino , Regulação da Expressão Gênica , Humanos , Hipertrigliceridemia/genética , Hipertrigliceridemia/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/metabolismo , Doença Arterial Periférica/genética , Doença Arterial Periférica/metabolismo , Regiões Promotoras Genéticas
3.
Nat Commun ; 6: 8804, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26542096

RESUMO

Eczema often precedes the development of asthma in a disease course called the 'atopic march'. To unravel the genes underlying this characteristic pattern of allergic disease, we conduct a multi-stage genome-wide association study on infantile eczema followed by childhood asthma in 12 populations including 2,428 cases and 17,034 controls. Here we report two novel loci specific for the combined eczema plus asthma phenotype, which are associated with allergic disease for the first time; rs9357733 located in EFHC1 on chromosome 6p12.3 (OR 1.27; P=2.1 × 10(-8)) and rs993226 between TMTC2 and SLC6A15 on chromosome 12q21.3 (OR 1.58; P=5.3 × 10(-9)). Additional susceptibility loci identified at genome-wide significance are FLG (1q21.3), IL4/KIF3A (5q31.1), AP5B1/OVOL1 (11q13.1), C11orf30/LRRC32 (11q13.5) and IKZF3 (17q21). We show that predominantly eczema loci increase the risk for the atopic march. Our findings suggest that eczema may play an important role in the development of asthma after eczema.


Assuntos
Asma/genética , Dermatite Atópica/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Adolescente , Adulto , Sistemas de Transporte de Aminoácidos Neutros/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Transporte/genética , Criança , Pré-Escolar , Proteínas de Ligação a DNA/genética , Progressão da Doença , Feminino , Proteínas Filagrinas , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Fator de Transcrição Ikaros/genética , Interleucina-4/genética , Cinesinas/genética , Modelos Logísticos , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Adulto Jovem
4.
PLoS One ; 10(4): e0122601, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25856389

RESUMO

Epigenetic mechanisms of gene regulation in context of cardiovascular diseases are of considerable interest. So far, our current knowledge of the DNA methylation profiles for atherosclerosis affected and healthy human vascular tissues is still limited. Using the Illumina Infinium Human Methylation27 BeadChip, we performed a genome-wide analysis of DNA methylation in right coronary artery in the area of advanced atherosclerotic plaques, atherosclerotic-resistant internal mammary arteries, and great saphenous veins obtained from same patients with coronary heart disease. The resulting DNA methylation patterns were markedly different between all the vascular tissues. The genes hypomethylated in athero-prone arteries to compare with atherosclerotic-resistant arteries were predominately involved in regulation of inflammation and immune processes, as well as development. The great saphenous veins exhibited an increase of the DNA methylation age in comparison to the internal mammary arteries. Gene ontology analysis for genes harboring hypermethylated CpG-sites in veins revealed the enrichment for biological processes associated with the development. Four CpG-sites located within the MIR10B gene sequence and about 1 kb upstream of the HOXD4 gene were also confirmed as hypomethylated in the independent dataset of the right coronary arteries in the area of advanced atherosclerotic plaques in comparison with the other vascular tissues. The DNA methylation differences observed in vascular tissues of patients with coronary heart disease can provide new insights into the mechanisms underlying the development of pathology and explanation for the difference in graft patency after coronary artery bypass grafting surgery.


Assuntos
Aterosclerose/genética , Doença das Coronárias/genética , Vasos Coronários/metabolismo , Epigênese Genética , Artéria Torácica Interna/metabolismo , Placa Aterosclerótica/genética , Veia Safena/metabolismo , Idoso , Aterosclerose/metabolismo , Aterosclerose/patologia , Doença das Coronárias/metabolismo , Doença das Coronárias/patologia , Vasos Coronários/patologia , Ilhas de CpG , Metilação de DNA , Feminino , Estudo de Associação Genômica Ampla , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Artéria Torácica Interna/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Anotação de Sequência Molecular , Especificidade de Órgãos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Veia Safena/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA