Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Biochem Biophys Res Commun ; 621: 20-24, 2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-35809343

RESUMO

Atherosclerosis has become prevalent not only in Western industrialized countries but all over the globe. Gpnmb, a transmembrane protein expressed by macrophages, has been detected in aortic lesions. We created an ApoE/Gpnmb-double knockout mouse using Crispr-Cas9 to examine the effect of Gpnmb deficiency on the development of atherosclerotic plaques. Feeding female mice a high cholesterol diet for 8 and 12 weeks, we detected an increased plaque size in aortic root sections of Gpnmb-deficient compared to control mice. However, the plaque area in whole thoracic and abdominal aorta was not different. Despite its strong expression in macrophages in aortic plaques, Gpnmb exerts only a minor effect on the growth of the atherosclerotic plaques in female mice. Future studies should examine plaque stability and include both sexes to elucidate the sex-specific function of Gpnmb in atherosclerosis.


Assuntos
Aterosclerose , Glicoproteínas de Membrana , Placa Aterosclerótica , Animais , Aorta Abdominal/patologia , Aterosclerose/metabolismo , Modelos Animais de Doenças , Proteínas do Olho/metabolismo , Feminino , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Placa Aterosclerótica/patologia
3.
Sci Rep ; 11(1): 19614, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608215

RESUMO

Obesity can cause a chronic, low-grade inflammation, which is a critical step in the development of type II diabetes and cardiovascular diseases. Inflammation is associated with the expression of glycoprotein nonmetastatic melanoma protein b (Gpnmb), which is mainly expressed by macrophages and dendritic cells. We generated a Gpnmb-knockout mouse line using Crispr-Cas9 to assess the role of Gpnmb in a diet-induced obesity. The absence of Gpnmb did not affect body weight gain and blood lipid parameters. While wildtype animals became obese but remained otherwise metabolically healthy, Gpnmb-knockout animals developed, in addition to obesity, symptoms of metabolic syndrome such as adipose tissue inflammation, insulin resistance and liver fibrosis. We observed a strong Gpnmb expression in adipose tissue macrophages in wildtype animals and a decreased expression of most macrophage-related genes independent of their inflammatory function. This was corroborated by in vitro data showing that Gpnmb was mostly expressed by reparative macrophages while only pro-inflammatory stimuli induced shedding of Gpnmb. The data suggest that Gpnmb is ameliorating adipose tissue inflammation independent of the polarization of macrophages. Taken together, the data suggest an immune-balancing function of Gpnmb that could delay the metabolic damage caused by the induction of obesity.


Assuntos
Tecido Adiposo/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Animais , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Inflamação/patologia , Resistência à Insulina/genética , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/prevenção & controle , Macrófagos/metabolismo , Camundongos , Camundongos Knockout
4.
Am J Physiol Regul Integr Comp Physiol ; 321(3): R513-R521, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34346721

RESUMO

Experiments aimed to evaluate the tissue distribution of Mas-related G protein-coupled receptor D (MrgD) revealed the presence of immunoreactivity for the MrgD protein in the rostral insular cortex (rIC), an important area for autonomic and cardiovascular control. To investigate the relevance of this finding, we evaluated the cardiovascular effects produced by the endogenous ligand of MrgD, alamandine, in this brain region. Mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) were recorded in urethane anesthetized rats. Unilateral microinjection of equimolar doses of alamandine (40 pmol/100 nL), angiotensin-(1-7), angiotensin II, angiotensin A, and Mas/MrgD antagonist d-Pro7-Ang-1-7 (50 pmol/100 nL), Mas antagonist A779 (100 pmol/100 nL), or vehicle (0.9% NaCl) were made in different rats (n = 4-6/group) into rIC. To verify the specificity of the region, a microinjection of alamandine was also performed into intermediate insular cortex (iIC). Microinjection of alamandine in rIC produced an increase in MAP (Δ = 15 ± 2 mmHg), HR (Δ = 36 ± 4 beats/min), and RSNA (Δ = 31 ± 4%), but was without effects at iIC. Strikingly, an equimolar dose of angiotensin-(1-7) at rIC did not produce any change in MAP, HR, and RSNA. Angiotensin II and angiotensin A produced only minor effects. Alamandine effects were not altered by A-779, a Mas antagonist, but were completely blocked by the Mas/MrgD antagonist d-Pro7-Ang-(1-7). Therefore, we have identified a brain region in which alamandine/MrgD receptor but not angiotensin-(1-7)/Mas could be involved in the modulation of cardiovascular-related neuronal activity. This observation also suggests that alamandine might possess unique effects unrelated to angiotensin-(1-7) in the brain.


Assuntos
Angiotensina I/farmacologia , Pressão Arterial/efeitos dos fármacos , Sistema Cardiovascular/inervação , Córtex Cerebral/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Rim/inervação , Proteínas do Tecido Nervoso/agonistas , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Sistema Nervoso Simpático/efeitos dos fármacos , Animais , Córtex Cerebral/fisiologia , Ligantes , Masculino , Microinjeções , Proteínas do Tecido Nervoso/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/agonistas , Proteínas Proto-Oncogênicas/metabolismo , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Sistema Nervoso Simpático/fisiologia
5.
J Cardiovasc Magn Reson ; 23(1): 63, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34053450

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM) related myocardial vascular remodelling may lead to the reduction of myocardial blood supply and a subsequent progressive loss of cardiac function. This process has been difficult to observe and thus their connection remains unclear. Here we used non-invasive myocardial blood flow sensitive CMR to show an impairment of resting myocardial perfusion in a mouse model of naturally occurring HCM. METHODS: We used a mouse model (DBA/2 J; D2 mouse strain) that spontaneously carries variants in the two most susceptible HCM genes-Mybpc3 and Myh7 and bears the key features of human HCM. The C57BL/6 J (B6) was used as a reference strain. Mice with either B6 or D2 backgrounds (male: n = 4, female: n = 4) underwent cine-CMR for functional assessment at 9.4 T. Left ventricular (LV) wall thickness was measured in end diastolic phase by cine-CMR. Quantitative myocardial perfusion maps (male: n = 5, female: n = 5 in each group) were acquired from arterial spin labelling (cine ASL-CMR) at rest. Myocardial perfusion values were measured by delineating different regions of interest based on the LV segmentation model in the mid ventricle of the LV myocardium. Directly after the CMR, the mouse hearts were removed for histological assessments to confirm the incidence of myocardial interstitial fibrosis (n = 8 in each group) and small vessel remodelling such as vessel density (n = 6 in each group) and perivascular fibrosis (n = 8 in each group). RESULTS: LV hypertrophy was more pronounced in D2 than in B6 mice (male: D2 LV wall thickness = 1.3 ± 0.1 mm vs B6 LV wall thickness = 1.0 ± 0.0 mm, p < 0.001; female: D2 LV wall thickness = 1.0 ± 0.1 mm vs B6 LV wall thickness = 0.8 ± 0.1 mm, p < 0.01). The resting global myocardial perfusion (myocardial blood flow; MBF) was lower in D2 than in B6 mice (end-diastole: D2 MBFglobal = 7.5 ± 0.6 vs B6 MBFglobal = 9.3 ± 1.6 ml/g/min, p < 0.05; end-systole: D2 MBFglobal = 6.6 ± 0.8 vs B6 MBFglobal = 8.2 ± 2.6 ml/g/min, p < 0.01). This myocardial microvascular dysfunction was observed and associated with a reduction in regional MBF, mainly in the interventricular septal and inferior areas of the myocardium. Immunofluorescence revealed a lower number of vessel densities in D2 than in B6 (D2 capillary = 31.0 ± 3.8% vs B6 capillary = 40.7 ± 4.6%, p < 0.05). Myocardial collagen volume fraction (CVF) was significantly higher in D2 LV versus B6 LV mice (D2 CVF = 3.7 ± 1.4% vs B6 CVF = 1.7 ± 0.7%, p < 0.01). Furthermore, a higher ratio of perivascular fibrosis (PFR) was found in D2 than in B6 mice (D2 PFR = 2.3 ± 1.0%, B6 PFR = 0.8 ± 0.4%, p < 0.01). CONCLUSIONS: Our work describes an imaging marker using cine ASL-CMR with a potential to monitor vascular and myocardial remodelling in HCM.


Assuntos
Cardiomiopatia Hipertrófica , Circulação Coronária , Animais , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Cardiomiopatia Hipertrófica/genética , Feminino , Imagem Cinética por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Valor Preditivo dos Testes
6.
Proc Natl Acad Sci U S A ; 116(40): 19983-19988, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527264

RESUMO

Pancreatic ß cells store insulin within secretory granules which undergo exocytosis upon elevation of blood glucose levels. Crinophagy and autophagy are instead responsible to deliver damaged or old granules to acidic lysosomes for intracellular degradation. However, excessive consumption of insulin granules can impair ß cell function and cause diabetes. Atp6ap2 is an essential accessory component of the vacuolar ATPase required for lysosomal degradative functions and autophagy. Here, we show that Cre recombinase-mediated conditional deletion of Atp6ap2 in mouse ß cells causes a dramatic accumulation of large, multigranular vacuoles in the cytoplasm, with reduction of insulin content and compromised glucose homeostasis. Loss of insulin stores and gigantic vacuoles were also observed in cultured insulinoma INS-1 cells upon CRISPR/Cas9-mediated removal of Atp6ap2. Remarkably, these phenotypic alterations could not be attributed to a deficiency in autophagy or acidification of lysosomes. Together, these data indicate that Atp6ap2 is critical for regulating the stored insulin pool and that a balanced regulation of granule turnover is key to maintaining ß cell function and diabetes prevention.


Assuntos
Deleção de Genes , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , ATPases Translocadoras de Prótons/genética , Receptores de Superfície Celular/genética , Animais , Autofagia , Sistemas CRISPR-Cas , Citosol/metabolismo , Feminino , Inativação Gênica , Insulinoma/metabolismo , Lisossomos/metabolismo , Masculino , Camundongos , Fenótipo , Regiões Promotoras Genéticas , RNA Interferente Pequeno/metabolismo , Ratos , Receptores de Superfície Celular/metabolismo , Receptores de Estrogênio/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/metabolismo
7.
Mediators Inflamm ; 2019: 9086758, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31360120

RESUMO

Macrophages contribute to a continuous increase in blood pressure and kidney damage in hypertension, but their polarization status and the underlying mechanisms have not been clarified. This study revealed an important role for M2 macrophages and the YM1/Chi3l3 protein in hypertensive nephropathy in a mouse model of hypertension. Bone marrow cells were isolated from the femurs and tibia of male FVB/N (control) and transgenic hypertensive animals that overexpressed the rat form of angiotensinogen (TGM(rAOGEN)123, TGM123-FVB/N). The cells were treated with murine M-CSF and subsequently with LPS+IFN-γ to promote their polarization into M1 macrophages and IL-4+IL-13 to trigger the M2 phenotype. We examined the kidneys of TGM123-FVB/N animals to assess macrophage polarization and end-organ damage. mRNA expression was evaluated using real-time PCR, and protein levels were assessed through ELISA, CBA, Western blot, and immunofluorescence. Histology confirmed high levels of renal collagen. Cells stimulated with LPS+IFN-γ in vitro showed no significant difference in the expression of CD86, an M1 marker, compared to cells from the controls or the hypertensive mice. When stimulated with IL-4+IL-13, however, macrophages of the hypertensive group showed a significant increase in CD206 expression, an M2 marker. The M2/M1 ratio reached 288%. Our results indicate that when stimulated in vitro, macrophages from hypertensive mice are predisposed toward polarization to an M2 phenotype. These data support results from the kidneys where we found an increased infiltration of macrophages predominantly polarized to M2 associated with high levels of YM1/Chi3l3 (91,89%), suggesting that YM1/Chi3l3 may be a biomarker of hypertensive nephropathy.


Assuntos
Hipertensão/metabolismo , Nefropatias/metabolismo , Lectinas/metabolismo , Macrófagos/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo , Animais , Biomarcadores/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Rim/metabolismo , Nefropatias/genética , Lectinas/genética , Ativação de Macrófagos/fisiologia , Masculino , Camundongos , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , beta-N-Acetil-Hexosaminidases/genética
8.
FASEB J ; 31(2): 556-568, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28148779

RESUMO

Cardiac diseases are the leading cause of death. Available treatment approaches are not sufficient to reverse persistent cardiac damage after injury; thus, the search for new therapeutic targets is essential. Our microarray-based screening in rat hearts 24 h after myocardial infarction (MI) yielded glycoprotein nonmetastatic melanoma protein B (GPNMB), which is known to be involved in inflammation and fibrosis after tissue injury. However, its role in the heart was elusive. We found increased cardiac expression levels of GPNMB in rats and mice after MI. Analysis of DBA/2J mice, which lack functional GPNMB due to a spontaneous point mutation, showed that systemic GPNMB deficiency was associated with preserved cardiac function and less left ventricular dilation after MI compared with DBA/2J mice with reconstituted GPNMB expression. These improvements were associated with decreased expression of matrix metalloproteinase 9, the cardiac stress genes for natriuretic peptides (atrial natriuretic peptide and brain natriuretic peptide), and ß-myosin heavy chain after MI. Moreover, GPNMB deficiency attenuated the dilated cardiomyopathy in muscle lim protein knockout mice but could not prevent cardiac hypertrophy induced by isoprenaline infusion. This is the first experimental study to show that GPNMB adversely influences myocardial remodeling.-Järve, A., Mühlstedt, S., Qadri, F., Nickl, B., Schulz, H., Hübner, N., Özcelik, C., Bader, M. Adverse left ventricular remodeling by glycoprotein nonmetastatic melanoma protein B in myocardial infarction.


Assuntos
Proteínas do Olho/metabolismo , Glicoproteínas de Membrana/metabolismo , Infarto do Miocárdio/metabolismo , Remodelação Ventricular/fisiologia , Animais , Proteínas do Olho/genética , Regulação da Expressão Gênica/fisiologia , Inflamação , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutação Puntual , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Células-Tronco/fisiologia
9.
J Mol Med (Berl) ; 94(9): 1005-14, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27251706

RESUMO

UNLABELLED: The chemokine CXCL12/SDF-1 is crucial for heart development and affects cardiac repair processes due to its ability to attract leukocytes and stem cells to injured myocardium. However, there is a great controversy whether CXCL12 is beneficial or detrimental after myocardial infarction (MI). The divergence in the reported CXCL12 actions may be due to the cellular source and time of release of the chemokine after MI. This study was designed to evaluate the role of cardiomyocyte-derived CXCL12 for cardiogenesis and heart repair after MI. We generated two rodent models each targeting CXCL12 in only one cardiac cell type: cardiomyocyte-specific CXCL12-overexpressing transgenic (Tg) rats and CXCL12 conditional knockout (cKO) mice. Animals of both models did not show any signs of cardiac abnormalities under baseline conditions. After induction of MI, cKO mice displayed preserved cardiac function and remodeling. Moreover, fibrosis was less pronounced in the hearts of cKO mice after MI. Accordingly, CXCL12 Tg rats revealed impaired cardiac function post-MI accompanied by enhanced fibrosis. Furthermore, we observed decreased numbers of infiltrating Th1 cells in the hearts of cKO mice. Collectively, our findings demonstrate that cardiomyocyte-derived CXCL12 is not involved in cardiac development but has adverse effects on the heart after injury via promotion of inflammation and fibrosis. KEY MESSAGES: • CXCL12 in cardiomyocytes is not involved in cardiac development. • CXCL12 deficiency in cardiomyocytes improves outcome of myocardial infarction. • CXCL12 overexpression in cardiomyocytes worsens outcome of myocardial infarction. • CXCL12 increases fibrosis and invasion of Th1 cells in the heart after infarction.


Assuntos
Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Organogênese/genética , Animais , Biópsia , Modelos Animais de Doenças , Fibrose , Expressão Gênica , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Especificidade de Órgãos/genética , Prognóstico , Ratos , Ratos Transgênicos , Células Th1/imunologia , Células Th1/metabolismo , Células Th1/patologia
10.
Biol Chem ; 397(2): 97-109, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26468906

RESUMO

Bradykinin (BK) and des-Arg9-BK are pro-inflammatory mediators acting via B2 (B2R) and B1 (B1R) receptors, respectively. We investigated the role of B2R and B1R in lipopolysaccharide (LPS)-induced hypothalamo-pituitary-adrenal (HPA) axis activation in SD rats. LPS given intraperitoneally (ip) up-regulated B1R mRNA in the hypothalamus, both B1R and B2R were up-regulated in pituitary and adrenal glands. Receptor localization was performed using immunofluorescence staining. B1R was localized in the endothelial cells, nucleus supraopticus (SON), adenohypophysis and adrenal cortex. B2R was localized nucleus paraventricularis (PVN) and SON, pituitary and adrenal medulla. Blockade of B1R prior to LPS further increased ACTH release and blockade of B1R 1 h after LPS decreased its release. In addition, we evaluated if blockade of central kinin receptors influence the LPS-induced stimulation of hypothalamic neurons. Blockade of both B1R and B2R reduced the LPS-induced c-Fos immunoreactivity in the hypothalamus. Our data demonstrate that a single injection of LPS induced a differential expression pattern of kinin B1R and B2R in the HPA axis. The tissue specific cellular localization of these receptors indicates that they may play a crucial role in the maintenance of body homeostasis during endotoxemia.


Assuntos
Endotoxemia/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Receptor B1 da Bradicinina/biossíntese , Receptor B2 da Bradicinina/biossíntese , Doença Aguda , Animais , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotoxemia/induzido quimicamente , Homeostase/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/farmacologia , Masculino , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor B1 da Bradicinina/análise , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/análise , Receptor B2 da Bradicinina/metabolismo
11.
Immunobiology ; 220(12): 1311-21, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26297425

RESUMO

Beyond the classical actions of the renin-angiotensin system on the regulation of cardiovascular homeostasis, several studies have shown its involvement in acute and chronic inflammation. The G protein-coupled receptor Mas is a functional binding site for the angiotensin-(1-7); however, its role in the immune system has not been fully elucidated. In this study, we evaluated the effect of genetic deletion of Mas receptor in lipopolysaccharide (LPS)-induced systemic and cerebral inflammation in mice. Inflammatory response was triggered in Mas deficient (Mas(-/-)) and C57BL/6 wild-type (WT) mice (8-12 weeks-old) by intraperitoneal injection of LPS (5 mg/kg). Mas(-/-) mice presented more intense hypothermia compared to WT mice 24 h after LPS injection. Systemically, the bone marrow of Mas(-/-) mice contained a lower number of neutrophils and monocytes 3 h and 24 h after LPS injection, respectively. The plasma levels of inflammatory mediators KC, MCP-1 and IL-10 were higher in Mas(-/-) mice 24 h after LPS injection in comparison to WT. In the brain, Mas(-/-) animals had a significant increase in the number of adherent leukocytes to the brain microvasculature compared to WT mice, as well as, increased number of monocytes and neutrophils recruited to the pia-mater. The elevated number of adherent leukocytes on brain microvasculature in Mas(-/-) mice was associated with increased expression of CD11b - the alpha-subunit of the Mac-1 integrin - in bone marrow neutrophils 3h after LPS injection, and with increased brain levels of chemoattractants KC, MIP-2 and MCP-1, 24 h later. In conclusion, we demonstrated that Mas receptor deficiency results in exacerbated inflammation in LPS-challenged mice, which suggest a potential role for the Mas receptor as a regulator of systemic and brain inflammatory response induced by LPS.


Assuntos
Inflamação/genética , Inflamação/imunologia , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Animais , Biomarcadores , Temperatura Corporal , Peso Corporal , Medula Óssea/patologia , Encéfalo/irrigação sanguínea , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Circulação Cerebrovascular , Quimiocinas/sangue , Quimiocinas/metabolismo , Quimiotaxia de Leucócito , Citocinas/sangue , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Inflamação/sangue , Inflamação/patologia , Contagem de Leucócitos , Lipopolissacarídeos/efeitos adversos , Masculino , Camundongos , Camundongos Knockout , Microcirculação , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/patologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Proto-Oncogene Mas
12.
Nat Genet ; 47(6): 647-53, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25961942

RESUMO

Cardiovascular disease is the most common cause of death worldwide, and hypertension is the major risk factor. Mendelian hypertension elucidates mechanisms of blood pressure regulation. Here we report six missense mutations in PDE3A (encoding phosphodiesterase 3A) in six unrelated families with mendelian hypertension and brachydactyly type E (HTNB). The syndrome features brachydactyly type E (BDE), severe salt-independent but age-dependent hypertension, an increased fibroblast growth rate, neurovascular contact at the rostral-ventrolateral medulla, altered baroreflex blood pressure regulation and death from stroke before age 50 years when untreated. In vitro analyses of mesenchymal stem cell-derived vascular smooth muscle cells (VSMCs) and chondrocytes provided insights into molecular pathogenesis. The mutations increased protein kinase A-mediated PDE3A phosphorylation and resulted in gain of function, with increased cAMP-hydrolytic activity and enhanced cell proliferation. Levels of phosphorylated VASP were diminished, and PTHrP levels were dysregulated. We suggest that the identified PDE3A mutations cause the syndrome. VSMC-expressed PDE3A deserves scrutiny as a therapeutic target for the treatment of hypertension.


Assuntos
Braquidactilia/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Hipertensão/congênito , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Sequência de Bases , Estudos de Casos e Controles , Diferenciação Celular , Criança , Feminino , Estudos de Associação Genética , Células HeLa , Humanos , Hipertensão/genética , Cinética , Masculino , Células-Tronco Mesenquimais/fisiologia , Camundongos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Miócitos de Músculo Liso/fisiologia , Linhagem
13.
J Am Heart Assoc ; 4(2)2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25630909

RESUMO

BACKGROUND: We tested the controversial hypothesis that vitamin D depletion aggravates hypertension and target-organ damage by influencing renin. METHODS AND RESULTS: Four-week-old double-transgenic rats (dTGR) with excess angiotensin (Ang) II production due to overexpression of the human renin (hREN) and angiotensinogen (hAGT) genes received vitamin D-depleted (n=18) or standard chow (n=15) for 3 weeks. The depleted group had very low serum 25-hydroxyvitamin D levels (mean±SEM; 3.8±0.29 versus 40.6±1.19 nmol/L) and had higher mean systolic BP at week 5 (158±3.5 versus 134.6±3.7 mm Hg, P<0.001), week 6 (176.6±3.3 versus 162.3±3.8 mm Hg, P<0.01), and week 7 (171.6±5.1 versus 155.9±4.3 mm Hg, P<0.05). Vitamin D depletion led to increased relative heart weights and increased serum creatinine concentrations. Furthermore, the mRNAs of natriuretic peptides, neutrophil gelatinase-associated lipocalin, hREN, and rRen were increased by vitamin D depletion. Regulatory T cells in the spleen and in the circulation were not affected. Ang metabolites, including Ang II and the counter-regulatory breakdown product Ang 1 to 7, were significantly up-regulated in the vitamin D-depleted groups, while ACE-1 and ACE-2 activities were not affected. CONCLUSIONS: Short-term severe vitamin D depletion aggravated hypertension and target-organ damage in dTGR. Our data suggest that even short-term severe vitamin D deficiency may directly promote hypertension and impacts on renin-angiotensin system components that could contribute to target-organ damage. The findings add to the evidence that vitamin D deficiency could also affect human hypertension.


Assuntos
Coração/fisiopatologia , Hipertensão/etiologia , Hipertensão/metabolismo , Sistema Renina-Angiotensina/genética , Deficiência de Vitamina D/complicações , Vitamina D/metabolismo , Proteínas de Fase Aguda/genética , Angiotensina II/genética , Angiotensinogênio/genética , Animais , Pressão Sanguínea/genética , Creatinina/sangue , Humanos , Lipocalina-2 , Lipocalinas/genética , Peptídeos Natriuréticos/genética , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Renina/genética , Fatores de Risco , Vitamina D/análogos & derivados , Vitamina D/sangue , Deficiência de Vitamina D/etiologia
14.
Hypertension ; 64(5): 1032-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25185127

RESUMO

Angiotensin (Ang) II is a potent mediator of both hypertension and cardiac damage; however, the mechanisms by which this occur remain unclear. B-cell lymphoma/leukemia 10 (Bcl10) is a member of the CBM signalosome, which links Ang II and nuclear factor-κB signaling. We hypothesized that Bcl10 is pivotal in the pathogenesis of Ang II-induced cardiac damage. Ang II infusion in mice lacking Bcl10 resulted in reduced cardiac fibrosis, less cellular infiltration, and improved arrhythmogenic electric remodeling, despite a similar degree of hypertension or cardiac hypertrophy. Adoptive transfer of bone marrow (BM), whereby Bcl10 knockout or wildtype BM was transferred to their opposite genotype recipients, revealed the dual importance of Bcl10 within both cardiac and immune cells. Loss of Bcl10 in cardiac cells resulted in reduced expression of genes important for the adhesion and recruitment of immune cells. In vitro experiments demonstrated that adhesion of monocytes to Ang II-treated endothelial cells also required Bcl10. Additionally, Bcl10 deficiency in macrophages reduced their intrinsic migratory ability. To address the role of BM-derived fibroblasts in the formation of cardiac fibrosis, we explored whether Bcl10 is also important for the infiltration of BM-derived (myo)fibroblasts into the heart. The transfer of green fluorescent protein positive wildtype BM into Bcl10 knockout recipient mice revealed a reduced number of noncardiac (myo)fibroblasts compared with those wildtype recipients. Our results demonstrate the significant role of Bcl10 in multiple cell types important for the generation of Ang II-induced cardiac damage and electric remodeling and may provide a new avenue for therapeutic intervention.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Angiotensina II/efeitos adversos , Remodelamento Atrial/fisiologia , Cardiopatias/induzido quimicamente , Cardiopatias/fisiopatologia , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteína 10 de Linfoma CCL de Células B , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/patologia , Fibrose , Cardiopatias/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/patologia , Miocárdio/metabolismo , Miocárdio/patologia , NF-kappa B/metabolismo
15.
J Mol Med (Berl) ; 92(3): 255-65, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24162089

RESUMO

UNLABELLED: Diabetes mellitus type 2 (DM2) is a disease with increasing importance in modern societies and insufficient treatment options. Pharmacological stimulation of insulin signaling, which is blunted in DM2, is a promising approach to treat this disease. It has been shown that activation of the angiotensin (Ang)-(1-7)/Mas axis of the renin-angiotensin system leads to an improved glucose uptake. In this study, we intended to evaluate, whether this effect could be exploited therapeutically. We first confirmed that Ang-(1-7) improves insulin signaling and glucose uptake in vitro in cultured cardiomyocytes. We then evaluated the therapeutic effect of a newly developed hydro-xypropyl-ß-cyclodextrin-based Ang-(1-7) nano-formulation in a novel transgenic rat model of inducible insulin resistance and DM2. The chronic administration of this compound prevented the marked elevation in blood glucose levels in these rats at a dose of 30 µg/kg, reversed the established hyperglycemic state at a dose of 100 µg/kg, and resulted in improved insulin sensitivity, reduced plasma insulin and decreased diabetic nephropathy. In conclusion, an oral Ang-(1-7) formulation reverses hyperglycemia and its consequences in an animal model of DM2 and represents a novel therapeutic option for the treatment of DM2 and other cardio-metabolic diseases. KEY MESSAGE: A novel rat model with inducible diabetes can be used to evaluate new therapies. Angiotensin-(1-7) is effective in an oral formulation packaged in cyclodextrine. Angiotensin-(1-7) is a promising antidiabetic drug.


Assuntos
Angiotensina I/administração & dosagem , Angiotensina I/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/prevenção & controle , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/uso terapêutico , Administração Oral , Angiotensina I/farmacologia , Animais , Animais Recém-Nascidos , Desoxiglucose/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/patologia , Hiperglicemia/complicações , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina/metabolismo , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fragmentos de Peptídeos/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
16.
Sci Rep ; 3: 1280, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23412352

RESUMO

Magnetic resonance imaging (MRI) provides the opportunity of tracking cells in vivo. Major challenges in dissecting cells from the recipient tissue and signal sensitivity constraints albeit exist. In this study, we aimed to tackle these limitations in order to study inflammation in autoimmune encephalomyelitis. We constructed a very small dual-tunable radio frequency (RF) birdcage probe tailored for (19)F (fluorine) and (1)H (proton) MR mouse neuroimaging. The novel design eliminated the need for extra electrical components on the probe structure and afforded a uniform -field as well as good SNR. We employed fluorescently-tagged (19)F nanoparticles and could study the dynamics of inflammatory cells between CNS and lymphatic system during development of encephalomyelitis, even within regions of the brain that are otherwise not easily visualized by conventional probes. (19)F/(1)H MR Neuroimaging will allow us to study the nature of immune cell infiltration during brain inflammation over an extensive period of time.


Assuntos
Encefalomielite Autoimune Experimental/fisiopatologia , Flúor , Imageamento por Ressonância Magnética/instrumentação , Neuroimagem/instrumentação , Animais , Encéfalo/citologia , Desenho de Equipamento , Imageamento por Ressonância Magnética/métodos , Camundongos , Nanopartículas , Neuroimagem/métodos , Prótons
17.
J Vasc Res ; 49(3): 260-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22456468

RESUMO

BACKGROUND/AIMS: Reduction of capillary network density occurs early in the development of metabolic syndrome and may be relevant for the precipitation of diabetes. Agonists of the peroxisome proliferator-activated receptor (PPAR)-γ transcription factor are vasculoprotective, but their capacity for structural preservation of the microcirculation is unclear. METHODS: Male Wistar rats were rendered diabetic by streptozotocin and treated with pioglitazone in chow for up to 12 weeks. Capillary density was determined in heart and skeletal muscle after platelet endothelial cell adhesion molecule-1 (PECAM-1) immunostaining. Hallmarks of apoptosis and angiogenesis were determined. RESULTS: Capillary density deteriorated progressively in the presence of hyperglycemia (from 971/mm2 to 475/mm2 in quadriceps muscle during 13 weeks). Pioglitazone did not influence plasma glucose, left ventricular weight, or body weight but nearly doubled absolute and relative capillary densities compared to untreated controls (1.2 vs. 0.6 capillaries/myocyte in heart and 1.5 vs. 0.9 capillaries/myocyte in quadriceps muscle) after 13 weeks of diabetes. No antiapoptotic or angiogenic influence of pioglitazone was detected while a reduced expression of hypoxia-inducible factor-3α and PPAR coactivator-1α (PGC-1α) mRNA as well as vascular endothelial growth factor (VEGF) protein possibly occurred as a consequence of improved vascularization. CONCLUSION: Pioglitazone preserves microvascular structure in diabetes independently of improvements in glycemic control and by a mechanism unrelated to VEGF-mediated angiogenesis.


Assuntos
Glicemia/análise , Capilares/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , Tiazolidinedionas/farmacologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais , Apoptose/efeitos dos fármacos , Capilares/fisiopatologia , Diabetes Mellitus Experimental/sangue , Masculino , PPAR gama/fisiologia , Pioglitazona , Ratos , Ratos Wistar , Estreptozocina , Tiazolidinedionas/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/análise
18.
Arterioscler Thromb Vasc Biol ; 31(12): 2972-4, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21979436

RESUMO

OBJECTIVE: Soluble fms-like tyrosine kinase 1 (sFlt1) is involved in the pathophysiology of preeclampsia and coronary artery disease. Because sFlt1 has a heparin-binding site, we investigated whether or not heparin releases sFlt1 from the extracellular matrix. METHODS AND RESULTS: We measured sFlt1 before and after heparin administration in 135 patients undergoing coronary angiography, percutanous coronary intervention, or both. sFlt1 was increased directly after heparin administration (from 254 to 13,440 pg/mL) and returned to baseline within 10 hours. Umbilical veins and endothelial cells treated with heparin released sFlt1. Heparinase I and III also increased sFlt1. Mice treated with heparin had elevated sFlt1 serum levels. Their serum inhibited endothelial tube formation. CONCLUSIONS: Heparin releases sFlt1 by displacing the sFlt1 heparin-binding site from heparan sulfate proteoglycans. Heparin could induce an antiangiogenic state.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Fibrinolíticos/farmacologia , Heparina/farmacologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/sangue , Angioplastia Coronária com Balão , Animais , Células Cultivadas , Angiografia Coronária , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/terapia , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Matriz Extracelular/metabolismo , Fibrinolíticos/administração & dosagem , Heparina/administração & dosagem , Heparina Liase/farmacologia , Humanos , Técnicas In Vitro , Injeções Intravenosas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Polissacarídeo-Liases/farmacologia
19.
Nature ; 462(7272): 505-9, 2009 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-19940926

RESUMO

Receptor-activator of NF-kappaB ligand (TNFSF11, also known as RANKL, OPGL, TRANCE and ODF) and its tumour necrosis factor (TNF)-family receptor RANK are essential regulators of bone remodelling, lymph node organogenesis and formation of a lactating mammary gland. RANKL and RANK are also expressed in the central nervous system. However, the functional relevance of RANKL/RANK in the brain was entirely unknown. Here we report that RANKL and RANK have an essential role in the brain. In both mice and rats, central RANKL injections trigger severe fever. Using tissue-specific Nestin-Cre and GFAP-Cre rank(floxed) deleter mice, the function of RANK in the fever response was genetically mapped to astrocytes. Importantly, Nestin-Cre and GFAP-Cre rank(floxed) deleter mice are resistant to lipopolysaccharide-induced fever as well as fever in response to the key inflammatory cytokines IL-1beta and TNFalpha. Mechanistically, RANKL activates brain regions involved in thermoregulation and induces fever via the COX2-PGE(2)/EP3R pathway. Moreover, female Nestin-Cre and GFAP-Cre rank(floxed) mice exhibit increased basal body temperatures, suggesting that RANKL and RANK control thermoregulation during normal female physiology. We also show that two children with RANK mutations exhibit impaired fever during pneumonia. These data identify an entirely novel and unexpected function for the key osteoclast differentiation factors RANKL/RANK in female thermoregulation and the central fever response in inflammation.


Assuntos
Regulação da Temperatura Corporal/efeitos dos fármacos , Regulação da Temperatura Corporal/fisiologia , Febre/induzido quimicamente , Febre/metabolismo , Ligante RANK/farmacologia , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Caracteres Sexuais , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Criança , Dinoprostona/metabolismo , Feminino , Febre/complicações , Perfilação da Expressão Gênica , Humanos , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/complicações , Pneumonia/metabolismo , Ligante RANK/administração & dosagem , Ligante RANK/antagonistas & inibidores , Ligante RANK/metabolismo , Ratos , Ratos Wistar , Receptor Ativador de Fator Nuclear kappa-B/genética , Receptores de Prostaglandina E/metabolismo , Receptores de Prostaglandina E Subtipo EP3
20.
Am J Physiol Regul Integr Comp Physiol ; 297(2): R250-7, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19474391

RESUMO

The (pro)renin receptor [(P)RR] plays a pivotal role in the renin-angiotensin system. Experimental models emphasize the role of (P)RR in organ damage associated with hypertension and diabetes. However, a mutation of the (P)RR gene, resulting in frame deletion of exon 4 [Delta4-(P)RR] is associated with X-linked mental retardation (XLMR) and epilepsy pointing to a novel role of (P)RR in brain development and cognitive function. We have studied (P)RR expression in mouse brain, as well as the effect of transfection of Delta4-(P)RR on neuronal differentiation of rat neuroendocrine PC-12 cells induced by nerve growth factor (NGF). In situ hybridization showed a wide distribution of (P)RR, including in key regions involved in the regulation of blood pressure and body fluid homeostasis. In mouse neurons, the receptor is on the plasma membrane and in synaptic vesicles, and stimulation by renin provokes ERK1/2 phosphorylation. In PC-12 cells, (P)RR localized mainly in the Golgi and in endoplasmic reticulum and redistributed to neurite projections during NGF-induced differentiation. In contrast, Delta4-(P)RR remained cytosolic and inhibited NGF-induced neuronal differentiation and ERK1/2 activation. Cotransfection of PC-12 cells with (P)RR and Delta4-(P)RR cDNA resulted in altered localization of (P)RR and inhibited (P)RR redistribution to neurite projections upon NGF stimulation. Furthermore, (P)RR dimerized with itself and with Delta4-(P)RR, suggesting that the XLMR and epilepsy phenotype resulted from a dominant-negative effect of Delta4-(P)RR, which coexists with normal transcript in affected males. In conclusion, our results show that (P)RR is expressed in mouse brain and suggest that the XLMR and epilepsy phenotype might result from a dominant-negative effect of the Delta4-(P)RR protein.


Assuntos
Diferenciação Celular , Neurônios/citologia , Receptores de Superfície Celular/fisiologia , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Epilepsia/genética , Epilepsia/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Deleção de Genes , Humanos , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Camundongos , Camundongos Endogâmicos , Fator de Crescimento Neural/farmacologia , Neuritos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Organelas/metabolismo , Células PC12 , Multimerização Proteica/fisiologia , Transporte Proteico/efeitos dos fármacos , Células Piramidais/metabolismo , Ratos , Renina/farmacologia , Vesículas Sinápticas/metabolismo , Sinaptofisina/metabolismo , Transfecção , Receptor de Pró-Renina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA