Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139857

RESUMO

The failure to treat infectious diseases due to the continual emergence of drug-resistant microbes poses a huge and serious challenge for human health globally. Currently, the discovery and development of natural therapeutic compounds are attracting considerable attention from researchers worldwide. In this project, two types of pollen grains (maize and clover) were evaluated for potential antimicrobial activities. Extracts of both pollen grains were purified using HPLC, which has been shown to have numerous phenolic and flavonoid compounds. Pyro catechol and methyl gallate were detected in high concentrations (1145.56 and 1056.57 µg/mL, respectively) in the maize extract, while caffeic acid, quercetin, and kaempferol (464.73, 393.05, and 390.93 µg/mL, respectively) were among the compounds observed at high concentrations in the clover pollen grains extract. Staphylococcus aureus, Escherichia coli, Salmonella typhi, and Candida albicans were more sensitive to the clover pollen grains extract with inhibition zones of 22 ± 0.2, 18 ± 0.1, 29 ± 0.3, and 42 ± 0.4 mm compared to the size of the inhibitory zones caused by the maize pollen grains extract (19 ± 0.3, 15 ± 0.4, 27 ± 0.1, and 22 ± 0.4 mm, respectively). Moreover, lower MIC values for the clover pollen grains extract were recorded against C. albicans (1.97 ± 0.04 µg/mL), S. aureus (62.5 ± 1.00 µg/mL), and E. coli (62.5 ± 0.07 µg/mL) than the MICs caused by the maize pollen grains extract. The use of a transmission electron microscope revealed that the E. coli that had been treated with the clover pollen grains extract showed changes in its cell walls compared to that treated with the maize pollen grains extract. The clover pollen grains extract exhibited a stronger antioxidant potential, with an IC50 value of 22.18 µg/mL, compared to an IC50 value of 54.85 µg/mL for the maize pollen grains extract, via a DPPH scavenging assay. Regarding anticancer activity, the maize pollen grains extract was revealed to be more effective in terms of inhibiting the human colon cancer cell line HCT-116, with an IC50 value of 67.02 ± 1.37 µg/mL, compared with the observed toxicity caused by the clover extract, with an IC50 value of 75.03 ± 1.02 µg/mL. Overall, the clover pollen grains extract demonstrated potent antibacterial and antioxidant activities, but not anticancer activity, when compared to the maize grains extract. Thus, the current findings related to both types of pollen grains (clover and maize) highlight their potential therapeutic applications for the treatment of certain infectious diseases and malignancies.

2.
Pharmaceutics ; 15(9)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37765148

RESUMO

Sidr honey is a valuable source of bioactive compounds with promising biological properties. In the present study, antimicrobial, antioxidant, and anti-quorum sensing properties of Saudi Sidr honey were assessed, along with phytochemical analysis, via gas chromatography-mass spectrometry (GC-MS). In silico study was also carried out to study the drug-likeness properties of the identified compounds and to study their affinity with known target proteins assessed using molecular docking approach. The results showed that Saudi Sidr honey exhibited promising antibacterial activity, with MIC values ranging from 50 to 400 mg/mL and MBC values from 50 to >450 mg/mL. Interestingly, the Saudi Sidr honey was active against Candida auris and Candida neoformans, with an MIC value of about 500 mg/mL. Moreover, the Sidr honey showed important antioxidant activities (ABTS assay: IC50 5.41 ± 0.045 mg/mL; DPPH assay: IC50 7.70 ± 0.065 mg/mL) and ß-carotene bleaching test results (IC50 ≥ 20 mg/mL). In addition, the Saudi Sidr honey was able to inhibit biofilm formation on glass slides at 1/2 MIC by 77.11% for Bacillus subtilis, 70.88% for Staphylococcus aureus, 61.79% for Escherichia coli, and 56.64% for Pseudomonas aeruginosa. Similarly, violacein production by Chromobacterium violaceum was reduced by about 56.63%, while the production of pyocyanin by P. aeruginosa was decreased to 46.27% at a low concentration of Saudi Sidr honey. ADMET properties showed that five identified compounds, namely, 1-cyclohexylimidazolidin-2-one, 3-Butyl-3-methylcyclohexanone, 4-butyl-3-methoxy-2-cyclo penten-1-one, 2,2,3,3-Tetramethyl cyclopropane carboxylic acid, and 3,5-dihydroxy-2-(3-methylbut-2-en-1-yl showed promising drug-likeness properties. The compound 3,5-dihydroxy-2-(3-methylbut-2-en-1-yl exhibited the highest binding energy against antimicrobial and antioxidant target proteins (1JIJ, 2VAM, 6B8A, 6F86, 2CDU, and 1OG5). Overall, the obtained results highlighted the promising potential of Saudi Sidr honey as a rich source of bioactive compounds that can be used as food preservatives and antimicrobial, antioxidant, and anti-quorum sensing molecules.

3.
Nutrients ; 15(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37571386

RESUMO

A range of natural products have been extensively studied for their chemopreventive potential for cancer, including those that inhibit growth and induce apoptosis. Sidr honey derived from the Ziziphus or Lote tree (Ziziphus spina-christi, Ziziphus lotus, or Ziziphus jujuba) is used in a wide range of traditional medicine practices. In the current study, the Saudi Sidr honey was analyzed by means of a GC-MS chromatogram and investigated for its antiproliferative effects on colorectal cancer cells (HCT-116), breast cancer cells (MCF-7), and lung cancer cells (A-549), as well as its apoptosis induction and cell cycle arrest potentials against human colorectal cancer cells (HCT-116). The effects of Saudi Sidr honey on cells were determined using the MTT assay and the clonogenic assay. The induction of apoptosis was studied using Annexin V-FITC flow cytometry analysis. The propidium iodide staining method was used to detect cell cycle arrest via flow cytometry. By means of performing GS-MS and HR-LCMS analysis, 23 different chemical components were identified from Saudi Sidr honey. A dose-response analysis showed that Saudi Sidr honey was more effective against HCT-116 (IC50 = 61.89 ± 1.89 µg/mL) than against MCF-7 (IC50 = 78.79 ± 1.37 µg/mL) and A-549 (IC50 = 94.99 ± 1.44 µg/mL). The antiproliferation activity of Saudi Sidr honey has been found to be linked to the aggregation of cells during the G1 phase, an increase in early and late apoptosis, and necrotic cell death in HCT-116 cells. Considering these promising findings that highlight the potential use of Saudi Sidr honey as an antitumor agent, further research should be carried out with the aim of isolating, characterizing, and evaluating the bioactive compounds involved in Sidr honey's antiproliferative activity to better understand the mechanism of their action.


Assuntos
Neoplasias Colorretais , Mel , Ziziphus , Humanos , Proliferação de Células , Arábia Saudita , Pontos de Checagem do Ciclo Celular , Apoptose
4.
Clin Lab ; 69(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37307114

RESUMO

BACKGROUND: Lymphoma is one of the leading cancers in Saudi Arabia. Because there is a paucity of data about the prevalence of lymphomas in Saudi Arabia, numerous extensive investigations are still required. Thus, the present study aimed to assess the common patterns of lymphomas in Northwestern Saudi Arabia. METHODS: This is a retrospective study conducted at the Histopathology Departments of King Khalid and King Salman Hospitals in Hail city, Saudi Arabia, between 2008-2020. The present study comprised 134 lymphoma patients, and all data referring to these patients, such as gender, age, lymphoma type, grade, and cancer site, were retrieved. RESULTS: The most common lymphoma type was NHL, followed by HL, constituting 32.8% and 20%, respectively. There was a clear difference between male and female patients of HL type where the male was higher than the female (24% versus 15.3%). The risk of HL associated with male gender, the relative risk (RR) CI (95% Confidence interval) = 2.0077 (0.9447 - 4.2667), p = 0.0700, z statistic = 1.812. CONCLUSIONS: Lymphoma is prevalent in the Hail region with an exceptionally everincreasing incidence of HL. Wide-ranging lymphoma varieties have been explored in the Hail region, denoting large groups of unattributable etiologic modifiable risk factors.


Assuntos
Linfoma , Humanos , Feminino , Masculino , Estudos Retrospectivos , Arábia Saudita , Hospitais , Fatores de Risco
5.
Plants (Basel) ; 12(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37299156

RESUMO

The green synthesis of nanoparticles (NPs) is attracting enormous attention as a new area of study that encompasses the development and discovery of new agents for their utilization in different fields, such as pharmaceuticals and food. Nowadays, the use of plants, particularly medicinal plants, for the creation of NPs has emerged as a safe, ecofriendly, rapid, and simple approach. Therefore, the present study aimed to use the Saudi mint plant as a medicinal plant for the synthesis of silver nanoparticles (AgNPs) and to evaluate the antimicrobial and antioxidant activities of AgNPs compared to mint extract (ME). A phenolic and flavonoid analysis that was conducted by using HPLC indicated the presence of numerous compounds in the ME. Through an HPLC analysis, chlorogenic acid at a concentration of 7144.66 µg/mL was the main detected component in the ME, while catechin, gallic acid, naringenin, ellagic acid, rutin, daidzein, cinnamic acid, and hesperetin were identified in varying concentrations. AgNPs were synthesized by using ME and were confirmed via UV-visible spectroscopy at 412 nm of the maximum absorption. The mean diameter of the synthesized AgNPs was measured by TEM to be 17.77 nm. Spectra obtained by using energy-dispersive X-ray spectroscopy indicated that silver was the main element formation in the created AgNPs. The presence of various functional groups, analyzed by using Fourier transform infrared spectroscopy (FTIR), indicated that the mint extract was responsible for reducing Ag+ to Ag0. The spherical structure of the synthesized AgNPs was confirmed by X-ray diffraction (XRD). Furthermore, the ME showed reduced antimicrobial activity (a zone of inhibition of 30, 24, 27, 29, and 22 mm) compared with the synthesized AgNPs (a zone of inhibition of 33, 25, 30, 32, 32, and 27 mm) against B. subtilis, E. faecalis, E. coli, P. vulgaris, and C. albicans, respectively. The minimum inhibitory concentration of the AgNPs was lower than that of the ME for all of the tested micro-organisms, except for P. vulgaris. The MBC/MIC index suggested that the AgNPs revealed a higher bactericidal effect compared to the ME. The synthesized AgNPs exhibited antioxidant activity with a reduced IC50 (IC50 of 8.73 µg/mL) compared to that of the ME (IC50 of 13.42 µg/mL). These findings demonstrate that ME could be applied as a mediator for AgNPs synthesis and natural antimicrobial and antioxidant agents.

6.
Front Chem ; 11: 1192074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153524

RESUMO

Cancer management is highly dependent on the immune status of the patient. During the COVID-19 pandemic, a large number of people suffered from anxiety and depression, especially cancer patients. The effect of depression on breast cancer (BC) and prostate cancer (PC) patients, during the pandemic has been analyzed in this study. Levels of proinflammatory cytokines (IFN-γ, TNF-α, and IL-6) and oxidative stress markers malondialdehyde (MDA) and carbonyl content (CC) were estimated in patients' serum samples. Serum antibodies against in vitro hydroxyl radical (•OH) modified pDNA (•OH-pDNA-Abs) were estimated using direct binding and inhibition ELISA. Cancer patients showed increased levels of proinflammatory cytokines (IFN-γ, TNF-α, and IL-6) and oxidative stress markers (MDA and CC levels), which were further significantly enhanced in cancer patients with depression compared to normal healthy (NH) individuals. Increased levels of •OH-pDNA-Abs were detected in breast cancer (0.506 ± 0.063) and prostate cancer (0.441 ± 0.066) patients compared to NH subjects. Serum antibodies were found to be significantly elevated in BC patients with depression (BCD) (0.698 ± 0.078) and prostate cancer patients with depression (PCD) (0.636 ± 0.058). Inhibition ELISA also exhibited significantly high percent inhibition in BCD (68.8% ± 7.8%) and PCD (62.9% ± 8.3%) subjects compared to BC (48.9% ± 8.1%), and PC (43.4% ± 7.5%) subjects. Cancer is characterized by enhanced oxidative stress and increased inflammation, which may be exaggerated with COVID-19 related depression. High oxidative stress and compromised antioxidant homeostasis exerts alterations in DNA, leading to formation of neo-antigens, subsequently leading to the generation of antibodies. COVID-19 pandemic related depression needs to be addressed globally for improved cancer patient care and cancer disease management.

7.
Sci Rep ; 13(1): 7462, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156818

RESUMO

Immunotherapies, including immune checkpoint inhibitors, have limitations in their effective treatment of malignancies. The immunosuppressive environment associated with the tumor microenvironment may prevent the achievement of optimal outcomes for immune checkpoint inhibitors alone, and nanotechnology-based platforms for delivery of immunotherapeutic agents are increasingly being investigated for their potential to improve the efficacy of immune checkpoint blockade therapy. In this manuscript, nanoparticles were designed with appropriate size and surface characteristics to enhance their retention of payload so that they can transmit their loaded drugs to the tumor. We aimed to enhance immune cell stimulation by a small molecule inhibitor of PD-1/PD-L1 (BMS202) using nanodiamonds (ND). Melanoma cells with different disease stages were exposed to bare NDs, BMS202-NDs or BMS202 alone for 6 h. Following this, melanoma cells were co-cultured with freshly isolated human peripheral blood mononuclear cells (hPBMCs). The effects of this treatment combination on melanoma cells were examined on several biological parameters including cell viability, cell membrane damage, lysosomal mass/pH changes and expression of γHA2X, and caspase 3. Exposing melanoma cells to BMS202-NDs led to a stronger than normal interaction between the hPBMCs and the melanoma cells, with significant anti-proliferative effects. We therefore conclude that melanoma therapy has the potential to be enhanced by non-classical T-cell Immune responses via immune checkpoint inhibitors delivered by nanodiamonds-based nanoparticles.


Assuntos
Melanoma , Nanodiamantes , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Leucócitos Mononucleares/patologia , Melanoma/patologia , Imunoterapia , Microambiente Tumoral , Melanoma Maligno Cutâneo
8.
J Funct Biomater ; 14(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37103327

RESUMO

The resistance of cancer and Helicobacter pylori to several drugs reflects a worldwide problem, and it has been the intention of numerous researchers to overcome this problem. Thus, in this study, Acacia nilotica fruits were subjected to HPLC analysis to detect their phenolic compounds and flavonoids. Moreover, A. nilotica's anti-H. pylori activity and its inhibitory activity against human hepatocellular carcinoma (HepG-2 cells) were reported. Various compounds with different concentrations, such as ferulic acid (5451.04 µg/mL), chlorogenic acid (4572.26 µg/mL), quercetin (3733.37 µg/mL), rutin (2393.13 µg/mL), gallic acid (2116.77 µg/mL), cinnamic acid (69.72 µg/mL), hesperetin (121.39 µg/mL) and methyl gallate (140.45 µg/mL), were detected. Strong anti-H. pylori activity at 31 mm was reported, compared to the positive control of the 21.67 mm inhibition zone. Moreover, the MIC and MBC were 7.8 µg/mL and 15.62 µg/mL, respectively, while the MIC and MBC of the positive control were 31.25 µg/mL. The concentration of MBC at 25%, 50% and 75% reflected H. pylori's anti-biofilm activity of 70.38%, 82.29% and 94.22%, respectively. Good antioxidant properties of the A. nilotica flower extract were documented at 15.63, 62.50, 250 and 1000 µg/mL, causing the DPPH scavenging percentages of 42.3%, 52.6%, 65.5% and 80.6%, respectively, with a IC50 of 36.74 µg/mL. HepG-2 cell proliferation was inhibited (91.26%) using 500 µg/mL of flower extract with an IC50 of 176.15 µg/mL, compared to an IC50 of 395.30 µg/mL used against human normal melanocytes. Molecular docking was applied to investigate ferulic acid with the H. pylori (4HI0) crystal structure to determine the best binding mode that interacted most energetically with the binding sites. Molecular docking indicated that ferulic acid was a proper inhibitor for the 4HI0 protein enzyme of H. pylori. A low energy score (-5.58 Kcal/mol) was recorded as a result of the interaction of ferulic acid with the residue's SER 139 active site caused by the O 29 atom, which was important for its antibacterial activity.

9.
Life (Basel) ; 13(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36836737

RESUMO

Juglans regia Linn. is a valuable medicinal plant that possesses the therapeutic potential to treat a wide range of diseases in humans. It has been known to have significant nutritional and curative properties since ancient times, and almost all parts of this plant have been utilized to cure numerous fungal and bacterial disorders. The separation and identification of the active ingredients in J. regia as well as the testing of those active compounds for pharmacological properties are currently of great interest. Recently, the naphthoquinones extracted from walnut have been observed to inhibit the enzymes essential for viral protein synthesis in the SARS-CoV-2. Anticancer characteristics have been observed in the synthetic triazole analogue derivatives of juglone, and the unique modifications in the parent derivative of juglone have paved the way for further synthetic research in this area. Though there are some research articles available on the pharmacological importance of J. regia, a comprehensive review article to summarize these findings is still required. The current review, therefore, abridges the most recent scientific findings about antimicrobial, antioxidant, anti-fungal, and anticancer properties of various discovered and separated chemical compounds from different solvents and different parts of J. regia.

10.
Polymers (Basel) ; 15(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36679271

RESUMO

Despite the advanced development in the field of drug discovery and design, fighting infectious and non-infectious diseases remains a major worldwide heath challenge due to the limited activity of currently used drugs. Nevertheless, in recent years, the approach of designing nanoparticles for therapeutic applications has gained more interest and promise for future use. Thus, the current study is focused on the evaluation of A. judaica extract and chitosan nanoparticles loaded extract (CNPsLE) for potential antimicrobial and anticancer activities. The HPLC analysis of the extract has shown the presence of various phenolic and flavonoid compounds, including kaempferol (3916.34 µg/mL), apigenin (3794.32 µg/mL), chlorogenic acid (1089.58 µg/mL), quercetin (714.97 µg/mL), vanillin (691.55 µg/mL), naringenin (202.14 µg/mL), and rutin (55.64 µg/mL). The extract alone showed higher MIC values against B. subtilis, E. coli, S. aureus, K. pneumonia, and C. albicans (62.5, 15.65, 15.62, 31.25, and 31.25 µg/mL, respectively), whereas lower MIC values were observed when the extract was combined with CNPsLE (0.97, 1.95, 3.9, 4.1, and 15.62 µg/mL, respectively). The extract exhibited low cytotoxicity against normal Vero cells with IC50 173.74 µg/mL in comparison with the cytotoxicity of the CNPsLE (IC50, 73.89 µg/mL). However, CNPsLE showed more selective toxicity against the human prostate cancer cell line (PC3) with IC50 of 20.8 µg/mL than the extract alone with 76.09 µg/mL. In the docking experiments, kaempferol and apigenin were revealed to be suitable inhibitors for prostate cancer (2Q7L). Overall, the obtained data highlighted the promising potential therapeutic use of CNPsLE as an anticancer and antimicrobial agent.

11.
Biomedicines ; 10(11)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36428553

RESUMO

The epithelial cell adhesion molecule (EpCAM) is considered an essential proliferation signature in cancer. In the current research study, qPCR induced expression of EpCAM was noted in acute lymphoblastic leukemia (ALL) cases. Costunolide, a sesquiterpene lactone found in crepe ginger and lettuce, is a medicinal herb with anticancer properties. Expression of EpCAM and its downstream target genes (Myc and TERT) wasdownregulated upon treatment with costunolide in Jurkat cells. A significant change in the telomere length of Jurkat cells was not noted at 72 h of costunolide treatment. An in silico study revealed hydrophobic interactions between EpCAM extracellular domain and Myc bHLH with costunolide. Reduced expression of NFκB, a transcription factor of EpCAM, Myc, and TERT in costunolide-treated Jurkat cells, suggested that costunolide inhibits gene expression by targeting NFκB and its downstream targets. Overall, the study proposes that costunolide could be a promising therapeutic biomolecule for leukemia.

12.
Molecules ; 27(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234908

RESUMO

Pyridine, 1,3,4-thiadiazole, and 1,3-thiazole derivatives have various biological activities, such as antimicrobial, analgesic, anticonvulsant, and antitubercular, as well as other anticipated biological properties, including anticancer activity. The starting 1-(3-cyano-4,6-dimethyl-2-oxopyridin-1(2H)-yl)-3-phenylthiourea (2) was prepared and reacted with various hydrazonoyl halides 3a-h, α-haloketones 5a-d, 3-chloropentane-2,4-dione 7a and ethyl 2-chloro-3-oxobutanoate 7b, which afforded the 3-aryl-5-substituted 1,3,4-thiadiazoles 4a-h, 3-phenyl-4-arylthiazoles 6a-d and the 4-methyl-3- phenyl-5-substituted thiazoles 8a,b, respectively. The structures of the synthesized products were confirmed by spectral data. All of the compounds also showed remarkable anticancer activity against the cell line of human colon carcinoma (HTC-116) as well as hepatocellular carcinoma (HepG-2) compared with the Harmine as a reference under in vitro condition. 1,3,4-Thiadiazole 4h was found to be most promising and an excellent performer against both cancer cell lines (IC50 = 2.03 ± 0.72 and 2.17 ± 0.83 µM, respectively), better than the reference drug (IC50 = 2.40 ± 0.12 and 2.54 ± 0.82 µM, respectively). In order to check the binding modes of the above thiadiazole derivatives, molecular docking studies were performed that established a binding site with EGFR TK.


Assuntos
Antineoplásicos , Tiadiazóis , Anticonvulsivantes , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB , Harmina , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Feniltioureia , Piridinas/farmacologia , Relação Estrutura-Atividade , Tiadiazóis/química , Tiazóis/química
13.
Microorganisms ; 10(10)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36296184

RESUMO

Infections caused by multi-drug-resistant bacteria in patients with chronic diseases have been associated with high mortality and morbidity. While few reports have evaluated bacterial infections in multiple chronic disease patients, the focus of the current study was to investigate the prevalence of bacterial infections and the susceptibility profiles of causative strains among various groups of patients suffering from chronic diseases. Microbiological reports of patients suffering from cancer, diabetes mellitus, cardiovascular diseases, kidney diseases, and skin burns were retrospectively collected from a tertiary hospital in Saudi Arabia. Approximately 54.2% of recruited patients were males, and positive urine was the most prevalent specimen associated with kidney disease patients (25%). Escherichia coli isolates were predominant among cardiovascular, kidney, and cancer patients. Staphylococcus aureus was commonly detected in diabetics and those with burns. Although resistance patterns varied based on the type of specimens and underlying diseases, Escherichia coli showed limited resistance to colistin, carbapenems, and tigecycline, while S. aureus demonstrated susceptibility to ciprofloxacin, gentamicin, and rifampin. These observations are crucial for clinicians and policymakers to ensure effective treatment plans and improve outcomes in these patients with comorbidity.

14.
Molecules ; 27(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35956775

RESUMO

Multiple biological functions of Mentha pulegium extract were evaluated in the current work. Phytochemical components of the M. pulegium extract were detected by Gas Chromatography-Mass Spectrometry (GC-MS) and High-performance liquid chromatography (HPLC). Moreover, M. pulegium extract was estimated for antioxidant potential by 2,2-Diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free radical scavenging, antimicrobial activity by well diffusion, and anticoagulant activity via prothrombin time (PT) and activated partial thromboplastin time (APTT). GC-MS analysis detected compounds including cholesterol margarate, stigmast-5-en-3-ol, 19-nor-4-androstenediol, androstan-17-one, pulegone-1,2-epoxide, isochiapin B, dotriacontane, hexadecanoic acid and neophytadiene. Chrysoeriol (15.36 µg/mL) was followed by kaempferol (11.14 µg/mL) and 7-OH flavone (10.14 µg/mL), catechin (4.11 µg/mL), hisperdin (3.05 µg/mL), and luteolin (2.36 µg/mL) were detected by HPLC as flavonoids, in addition to ferulic (13.19 µg/mL), cinnamic (12.69 µg/mL), caffeic (11.45 µg/mL), pyrogallol (9.36 µg/mL), p-coumaric (5.06 µg/mL) and salicylic (4.17 µg/mL) as phenolics. Antioxidant activity was detected with IC50 18 µg/mL, hemolysis inhibition was recorded as 79.8% at 1000 µg/mL, and PT and APTT were at 21.5 s and 49.5 s, respectively, at 50 µg/mL of M. pulegium extract. The acute toxicity of M. pulegium extract was recorded against PC3 (IC50 97.99 µg/mL) and MCF7 (IC50 80.21 µg/mL). Antimicrobial activity of M. pulegium extract was documented against Bacillus subtilis, Escherichia coli, Pseudomonasaureus, Candida albicans, Pseudomonas aeruginosa, but not against black fungus Mucor circinelloides. Molecular docking was applied using MOE (Molecular Operating Environment) to explain the biological activity of neophytadiene, luteolin, chrysoeriol and kaempferol. These compounds could be suitable for the development of novel pharmacological agents for treatment of cancer and bacterial infections.


Assuntos
Anti-Infecciosos , Mentha pulegium , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antioxidantes/química , Hemólise , Hemolíticos , Quempferóis , Luteolina , Mentha pulegium/química , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia
15.
Biomed Res Int ; 2022: 3234484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898683

RESUMO

People with hematologic malignancies (HM) frequently postulate intensive care unit (ICU) hospitalization due to organ damage caused by the disease process or treatment-related consequences. This study is aimed at looking at mortality and sign factors in adult patients with hematologic malignancy (HM) who have been hospitalized in the ICU. Death was one quality indicator; researchers used a machine learning approach to find determinants of death. As per the study, there have been 206 patients hospitalized in the ICU (mean age: 51.3 ± 13.6 years; 60% male). The average length of stay was three days, with 14.1% requiring extended ICU commitment. ICU death was 45.6% at 30 days, 62.6% at sixty days, and 74.3% at twelve months, rising to 59.2% at thirty days, 62.6% at sixty days, and 74.3% at twelve months. Ventilation systems and vasodilating medication were linked to higher ICU death, but admission to the ICU surgically and experiencing malignancies are linked with lower death rates. Patients with HM who are hospitalized in the ICU have a high mortality rate (45.6%), which rises to 74.3% after a year. Serious illness, postsurgical hospitalization, and malignancy were revealed as determinants of patient outcomes in multivariate analyses.


Assuntos
Neoplasias Hematológicas , Adulto , Estado Terminal , Feminino , Neoplasias Hematológicas/tratamento farmacológico , Mortalidade Hospitalar , Hospitalização , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos
16.
Artigo em Inglês | MEDLINE | ID: mdl-35692581

RESUMO

In the present study, we investigated the cytotoxic effects of Athyrium hohenackerianum ethanolic extract (AHEE) on the proliferation of breast, lung, and colon cancer cells. The AHEE was tested for its effect on the progression of the cell cycle, followed by induction of apoptosis determination by flow cytometry. Real-time qRT-PCR was also utilized to observe the initiation of apoptosis. In addition, GC-MS was performed in order to identify the active phytochemicals present in the AHEE. A cytotoxic activity with an IC50 value of 123.90 µg/mL against HCT-116 colon cancer cells was exhibited by AHEE. Following propidium iodide staining, annexin-V/PI, and clonogenic assays, AHEE treatment results in cell arrest in the S phase, causing an increase in the early and late phases of apoptosis and displaying antiproliferative potential, respectively. The morphological alterations were further monitored using acridine orange/ethidium bromide (AO/EB) staining. When compared with the control cells, features of apoptotic cell death, including nuclear fragmentation, in the AHEE-treated cells were noticed. The apoptosis was also confirmed by detecting the increased expression of p53 and caspase-3 along with the downregulation of Bcl-2. GC-MS analysis revealed that trans-linalool oxide, loliolide, phytol, 4,8,12,16-tetramethylheptadecan-4-olide, and gamma-sitosterol were the major phytochemical constituents. Based on these findings, it can be suggested that AHEE causes cellular death via apoptosis, which should be further explored for the identification of active compounds responsible for these observed effects. Therefore, AHEE can be used in the pharmaceutical development of anticancer agents for cancer therapeutics.

17.
Front Genet ; 13: 909903, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692834

RESUMO

Lymphoma is a chronic inflammatory disease in which the immune system is highly affected. Increased oxidative stress is one of the common conditions of cancer and affects macromolecules. Histone modifications affect the chromatin structure and functions. In this study, histone H1 (His-H1) protein was modified by reactive oxygen species (ROS), and structural and chemical changes were studied. Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL) patients were selected, and oxidative stress markers, inflammatory cytokines, and serum autoantibodies were analyzed using biochemical and immunological assays. Furthermore, the formation of antigen-antibody immune complexes was assessed by the Langmuir plot. ROS-modified His-H1 (ROS-His-H1) showed substantial structural perturbation in protein (UV-hyperchromicity and increased intrinsic fluorescence) compared to the native His-H1 protein. A possible explanation for the changes is suggested by the exposure of the aromatic chromophore to the solvent. In-depth structural analysis by circular dichroism (CD) exhibited major changes in α-helix (-21.43%) and turns (+33%), reflecting changes in the secondary structure of histone H1 protein after ROS exposure. ELISA and competitive ELISA findings revealed high recognitions of serum autoantibodies to ROS-His-H1 from NHL, followed by HL subjects. Healthy controls showed negligible binding. Non-modified His-H1 did not show any binding with serum samples from either cohort. High apparent association constants (ACCs) were calculated for ROS-His-H1 using purified IgGs from NHL (1.46 × 10-6 M) compared to HL (1.33 × 10-6 M) patients. Non-modified His-H1 exhibited a hundred times less ACC for NHL (2.38 × 10-8 M) and HL (2.46 × 10-8 M) patients. Thus, ROS modifications of histone H1 cause structural changes and expose cryptic neo-epitopes on the protein against which autoantibodies were generated. These perturbations might affect the histone DNA interaction dynamics and potentially be correlated with gene dysregulation. These subtle molecular changes with an immune imbalance might further aggravate the disease.

18.
Sci Rep ; 12(1): 5914, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396383

RESUMO

Secondary plant metabolites remain one of the key sources of therapeutic agents despite the development of new approaches for the discovery of medicinal drugs. In the current study, chemical analysis, and biological activities of Kei apple (Dovyalis caffra) methanolic extract were evaluated. Chemical analysis was performed using HPLC and GC-MS. Antiviral and anticancer effect were assessed using the crystal violet technique and activity against human liver cells (HepG2), respectively. Antibacterial activity was tested with the disc diffusion method. The obtained results showed that chlorogenic acid (2107.96 ± 0.07 µg/g), catechin (168 ± 0.58 µg/g), and gallic acid (15.66 ± 0.02 µg/g) were the main bioactive compounds identified by HPLC techniques. While, compounds containing furan moieties, as well as levoglucosenone, isochiapin B, dotriacontane, 7-nonynoic acid and tert-hexadecanethiol, with different biological activities were identified by GC-MS. Additionally, inhibition of 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) scavenging was 79.25% at 2000 µg/mL, indicating its antioxidant activity with IC50 of 728.20 ± 1.04 µg/mL. The tested extract exhibited potential anticancer activity (58.90% toxicity) against HepG2 cells at 1000 µg/mL. Potential bacterial inhibition was observed mainly against Escherichia coli and Proteus vulgaris, followed by Staphylococcus aureus and Bacillus subtilis with a diameter of growth inhibition ranging from 13 to 24 mm. While weak activities were recorded for fungi Candida albicans (10 mm). The extract showed mild antiviral activity against human coronavirus 229E with a selective index (SI) of 10.4, but not against human H3N2 (SI of 0.67). The molecular docking study's energy ratings were in good promise with the experiment documents of antibacterial and antiviral activities. The findings suggest that D. caffra juice extract is a potential candidate for further experiments to assess its use as potential alternative therapeutic agent.


Assuntos
Antioxidantes , Salicaceae , Antibacterianos/análise , Antibacterianos/farmacologia , Antioxidantes/química , Antivirais/análise , Antivirais/farmacologia , Frutas/química , Humanos , Vírus da Influenza A Subtipo H3N2 , Simulação de Acoplamento Molecular , Extratos Vegetais/química
19.
Cells ; 10(4)2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810313

RESUMO

Diamond Blackfan Anemia (DBA) is a congenital macrocytic anemia associated with ribosomal protein haploinsufficiency. Ribosomal dysfunction delays globin synthesis, resulting in excess toxic free heme in erythroid progenitors, early differentiation arrest, and pure red cell aplasia. In this study, DBA induced pluripotent stem cell (iPSC) lines were generated from blood mononuclear cells of DBA patients with inactivating mutations in RPS19 and subjected to hematopoietic differentiation to model disease phenotypes. In vitro differentiated hematopoietic cells were used to investigate whether eltrombopag, an FDA-approved mimetic of thrombopoietin with robust intracellular iron chelating properties, could rescue erythropoiesis in DBA by restricting the labile iron pool (LIP) derived from excessive free heme. DBA iPSCs exhibited RPS19 haploinsufficiency, reduction in the 40S/60S ribosomal subunit ratio and early erythroid differentiation arrest in the absence of eltrombopag, compared to control isogenic iPSCs established by CRISPR/Cas9-mediated correction of the RPS19 point mutation. Notably, differentiation of DBA iPSCs in the presence of eltrombopag markedly improved erythroid maturation. Consistent with a molecular mechanism based on intracellular iron chelation, we observed that deferasirox, a clinically licensed iron chelator able to permeate into cells, also enhanced erythropoiesis in our DBA iPSC model. In contrast, erythroid maturation did not improve substantially in DBA iPSC differentiation cultures supplemented with deferoxamine, a clinically available iron chelator that poorly accesses LIP within cellular compartments. These findings identify eltrombopag as a promising new therapeutic to improve anemia in DBA.


Assuntos
Anemia de Diamond-Blackfan/tratamento farmacológico , Anemia de Diamond-Blackfan/patologia , Benzoatos/uso terapêutico , Diferenciação Celular , Células Eritroides/patologia , Hidrazinas/uso terapêutico , Células-Tronco Pluripotentes Induzidas/patologia , Modelos Biológicos , Pirazóis/uso terapêutico , Anemia de Diamond-Blackfan/genética , Animais , Sequência de Bases , Benzoatos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células Eritroides/efeitos dos fármacos , Eritropoese , Humanos , Hidrazinas/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Espaço Intracelular/metabolismo , Ferro/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação/genética , Pirazóis/farmacologia
20.
Stem Cell Res ; 41: 101600, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31710911

RESUMO

One of the most promising objectives of clinical hematology is to derive engraftable autologous hematopoietic stem cells (HSCs) from human induced pluripotent stem cells (iPSCs). Progress in translating iPSC technologies to the clinic relies on the availability of scalable differentiation methodologies. In this study, human iPSCs were differentiated for 21 days using STEMdiff™, a monolayer-based approach for hematopoietic differentiation of human iPSCs that requires no replating, co-culture or embryoid body formation. Both hematopoietic and non-hematopoietic cells were functionally characterized throughout differentiation. In the hematopoietic fraction, an early transient population of primitive CD235a+ erythroid progenitor cells first emerged, followed by hematopoietic progenitors with multilineage differentiation activity in vitro but no long-term engraftment potential in vivo. In later stages of differentiation, a nearly exclusive production of definitive erythroid progenitors was observed. In the non-hematopoietic fraction, we identified a prevalent population of mesenchymal stromal cells and limited arterial vascular endothelium (VE), suggesting that the cellular constitution of the monolayer may be inadequate to support the generation of HSCs with durable repopulating potential. Quantitative modulation of WNT/ß-catenin and activin/nodal/TGFß signaling pathways with CHIR/SB molecules during differentiation enhanced formation of arterial VE, definitive multilineage and erythroid progenitors, but was insufficient to orchestrate the generation of engrafting HSCs. Overall, STEMdiff™ provides a clinically-relevant and readily adaptable platform for the generation of erythroid and multilineage hematopoietic progenitors from human pluripotent stem cells.


Assuntos
Diferenciação Celular , Células Precursoras Eritroides/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Via de Sinalização Wnt , Técnicas de Cocultura , Células Precursoras Eritroides/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA