RESUMO
Oil bodies (OBs) function as organelles that store lipids in plant seeds. An oil body (OB) is encased by a membrane composed of proteins (e.g., oleosins, caleosins, and steroleosins) and a phospholipid monolayer. The distinctive protein-phospholipid membrane architecture of OBs imparts exceptional stability even in extreme environments, thereby sparking increasing interest in their structure and properties. However, a comprehensive understanding of the structure-activity relationships determining the stability and properties of oil bodies requires a more profound exploration of the associated membrane proteins, an aspect that remains relatively unexplored. In this review, we aim to summarize and discuss the structural attributes, biological functions, and properties of OB membrane proteins. From a commercial perspective, an in-depth understanding of the structural and functional properties of OBs is important for the expansion of their applications by producing artificial oil bodies (AOB). Besides exploring their structural intricacies, we describe various methods that are used for purifying and isolating OB membrane proteins. These insights may provide a foundational framework for the practical utilization of OB membrane proteins in diverse applications within the realm of AOB technology, including biological and probiotic delivery, protein purification, enzyme immobilization, astringency detection, and antibody production.
RESUMO
The molecular structure and morphologies of complex colloidal particles with modified glycine (S-11S) and d-galactose were studied by multispectral, microscopic imaging and chromatographic techniques at different temperatures, and the self-assembly and aggregation mechanisms were determined. Overall, high-temperature-treated S-11S and d-galactose associate at cysteine and phenylalanine sites and self-assemble into colloidal particles of greater stability than glycinin and S-11S via ionic and disulfide bonds. The structure and subunit content of composite colloidal particles were changed. Assessing the sub-microstructure reveals that temperature can regulate the directional aggregation of complex colloidal particles. The elasticity of the complex colloidal particles is maximum enhanced at 95â¯â as confirmed by the rheological. Thus, the heat-treated aggregation of the soy protein and its complex was evaluated to provide a new theoretical basis for the application of soy protein in gels and other areas and contribute to the design of new soy protein products.
Assuntos
Globulinas , Proteínas de Soja , Proteínas de Soja/química , Temperatura , Galactose , Globulinas/químicaRESUMO
Herein, we used pH-shifted and pH-driven methods to assemble kidney-bean protein isolate (KPI) and luteolin (Lut) into a nanocomplex and subsequently investigated their binding mechanism, structure, and functional properties. Results showed that the nanocomplex prepared by the pH-driven method exhibited a better encapsulation effect and controlled release of Lut. Fluorescence spectroscopy and molecular docking analysis showed that the binding affinities under alkaline conditions were higher than those under acidic and neutral conditions. Various spectral techniques were used to determine the structural changes in the KPI-Lut nanocomplex, including the transformation of α-helices and ß-sheets and alteration of specific amino acid microenvironments, which were more pronounced in the pH-driven nanocomplex. The structural changes in the nanocomplex further affected their surface hydrophobicity and thermal stability. Additionally, the combination of KPI and Lut significantly improved the antioxidant activity and α-glucosidase inhibitory ability of the resultant nanocomplexes, particularly the one prepared by the pH-driven method.
Assuntos
Luteolina , Simulação de Acoplamento Molecular , Concentração de Íons de Hidrogênio , Luteolina/químicaRESUMO
In this study, oil bodies (OBs) loaded with curcumin (Cur) were successfully prepared via an ultrasonic and pH-driven method. Ultrasonic treatment significantly improved the encapsulation efficiency (EE) and loading capacity (LC) of Cur, producing OB particles with small size, uniform distribution, and high ζ-potential absolute values. When the ultrasonic power was 200 W, the EE, LC, and ζ-potential absolute value were the greatest (88.27 %, 0.044 %, and -25.71 mV, respectively), and the OBs possessed the highest yellowness, representing the best treatment result. The confocal laser scanning microscopy (CLSM) and cryo-scanning electron microscopy (cryo-SEM) results was also intuitionally shown that. Moreover, circular dichroism (CD) proved that ultrasonic treatment could unfold the surface protein structure, further enhancing the stability. Therefore, the cream index (CI), peroxide value (POV), and thiobarbituric acid reactive substances (TBARS) were the lowest when the ultrasonic power was 200 W. In this case, the Cur loaded in OBs was well protected against hostile conditions, evidenced by the highest Cur retention rate and the lowest degradation rate constant. Finally, the in vitro gastrointestinal digestion simulation results showed that the ultrasonic treatment effectively increased the release of FFA, bioaccessibility, and stability of Cur, especially when the ultrasonic power was 200 W. This research offers a new OB-based delivery system to stabilize, deliver, and protect Cur for food processing.
Assuntos
Curcumina , Curcumina/química , Emulsões/química , Gotículas Lipídicas/metabolismo , Ultrassom , Digestão , Concentração de Íons de Hidrogênio , Tamanho da PartículaRESUMO
Natural polymers, such as polysaccharides and proteins, have been used to prepare several delivery systems owing to their abundance, bioactivity, and biodegradability. They are usually modified or combined with small molecules to form the delivery systems needed to meet different needs in food systems. This paper reviews the interactions of proteins, polysaccharides, and polyphenols in the bulk phase and discusses the design strategies, coupling techniques, and their applications as conjugates in emulsion delivery systems, including traditional, Pickering, multilayer, and high internal-phase emulsions. Furthermore, it explores the prospects of the application of conjugates in food preservation, food development, and nanocarrier development. Currently, there are seven methods for composite delivery systems including the Maillard reaction, carbodiimide cross-linking, alkali treatment, enzymatic cross-linking, free radical induction, genipin cross-linking, and Schiff base chemical cross-linking to prepare binary and ternary conjugates of proteins, polysaccharides, and polyphenols. To design an effective target complex and its delivery system, it is helpful to understand the physicochemical properties of these biomolecules and their interactions in the bulk phase. This review summarizes the knowledge on the interaction of biological complexes in the bulk phase, preparation methods, and the preparation of stable emulsion delivery system.
RESUMO
Herein, ultrasound-assisted conventional covalent binding methods (alkali treatment, free radical mediation, and an enzymatic method) were used to prepare soybean protein isolate (SPI)-(-)-epigallocatechin gallate (EGCG) conjugates to investigate the enhancement effect of the ultrasound synergistic treatment. In addition, the influence of EGCG grafting on the structure and properties of SPI was evaluated via reactive group analysis, spectral analysis, surface hydrophobicity measurements, emulsification property assessment, and α-glucosidase inhibition analysis. The obtained results revealed that the enzymatic method produced the highest polyphenol grafting content among the conventional techniques. Meanwhile, ultrasound treatment increased the amount of grafted polyphenol species during the alkali treatment and free radical mediation procedure, decreased the grafting efficiency in the enzymatic method, and maximized the grafting efficiency during the alkali treatment. In addition, reactive group and spectral analyses demonstrated that EGCG formed C-N and C-S bonds with SPI and decreased the α-helix content in the protein structure, thereby increasing the molecular flexibility of SPI. It also produced hydrogen bonds and hydrophobic interactions, as demonstrated by the results of molecular docking. Furthermore, the EGCG grafting of SPI conducted under the ultrasound-assisted conditions endowed SPI with unique functional characteristics, including good emulsification and antioxidant properties and high α-glucosidase inhibitory activity, while the ultrasound-assisted alkali treatment resulted in the optimal functional properties. The results of this study provide new insights into the effective preparation of SPI-EGCG complexes with multiple functionalities, thereby expanding the scope of high-value SPI utilization.
Assuntos
Polifenóis , alfa-Glucosidases , Simulação de Acoplamento Molecular , Álcalis , Radicais Livres , Proteínas de Soja/químicaRESUMO
Herein, cationic soy protein (NSPI) was synthesized by grafting Ethylenediamine (EDA) onto soy protein isolate (SPI), and protein-gallic acid (GA) complexes were formed by mixing NSPI with GA in various ratios. We assessed the structure, particle size, thermal stability, emulsifying ability, and antioxidant capacity of NSPI and complexes. Results show that grafting with EDA introduced a positive charge to SPI and resulted in a uniform particle size, and enhanced thermal stability, emulsifying ability, and antioxidant capacity. In addition, NSPI presented more amino groups and stronger interactions with GA compared to SPI. EDA and GA synergistically increased the flexibility of SPI, reducing the α-helix content and increasing the random coil content. Moreover, the interactions between SPI, NSPI, and GA were static, and hydrophobic and electrostatic between GA and SPI and NSPI, respectively. Grafting SPI with EDA improved functionality and interactions with GA, implying that NSPI-GA complexes may function as emulsifiers and antioxidants.
RESUMO
Cactus is a tropical fruit with a high nutritional value; however, little information is available regarding the comprehensive utilization of its byproducts. This study aimed to explore the composition and nutritional value of cactus fruit seed oil (CFO) and reveal the effects of ultrasound-assisted extraction and traditional solvent extraction on oil quality. Foodomics analysis showed that CFO extracted using a traditional solvent is rich in linolenic acid (9c12cC18:2, 57.46 ± 0.84 %), α-tocopherol (20.01 ± 1.86 mg/100 g oil), and canolol (200.10 ± 1.21 µg/g). Compared to traditional solvent extraction, ultrasound-assisted extraction can significantly increase the content of lipid concomitants in CFO, whereas excessive ultrasound intensity may lead to the oxidation of oils and the formation of free radicals. Analysis of the thermal properties showed that ultrasound had no effect on the crystallization or melting behavior of CFO. To further demonstrate the nutritional value of CFO, a lipopolysaccharide (LPS)-induced lipid metabolism imbalance model was used. Lipidomics analysis showed that CFO significantly reduced the content of oxidized phospholipids stimulated by LPS and increased the content of highly bioactive metabolites such as ceramides, thus alleviating LPS-induced damage in C. elegans. Hence, CFO is a functional oil with high value, and ultrasound-assisted extraction is advocated. These findings provide new insights into the comprehensive utilization of cactus fruits.
Assuntos
Frutas , Opuntia , Animais , Frutas/química , Opuntia/química , Lipopolissacarídeos/análise , Caenorhabditis elegans , Ultrassom , Óleos de Plantas/química , SolventesRESUMO
The use of by-products as functional components in food production is gaining popularity. This study investigated the structure, biological activity, interaction force, and emulsion stability of soybean meal hydrolysate (SMHs) after covalent conjugation with proanthocyanidin (PC), epigallocatechin (EGCG), gallic acid (GA), and caffeic acid (CA). SDS-PAGE confirmed the formation of SMHs-polyphenol conjugates. Structural analysis indicates unfolding and disordered-structure formation. This transformation directly influenced the antioxidant activity and emulsification of SMHs. The antioxidant and emulsifying properties of all covalent complexes were superior to SMHs, in order of SMHs-PC, SMHs-EGCG, SMHs-GA, and SMHs-CA. Among, SMHs-PC conjugates displayed the highest antioxidant activity (ABTSâ¢+ and DPPH radical scavenging capacities of 89.33% and 52.71%, respectively), total polyphenol content (235.10â¯mg/g), and emulsification activity (EAI) and stability (ESI) values (109.27â¯m2/g and 135.05â¯min, respectively). Moreover, SMHs-PC emulsion showed the smallest particle size (467.20â¯nm), highest viscosity (520.19â¯Pa.s), highest protein adsorption (94.33%), and lowest release rate of free fatty acids (FFAs) (18.61%) after digestion. These results provided valuable information for the use of modified SMHs as emulsifiers, which is a promising approach for increasing the value of soybean meal.
Assuntos
Antioxidantes , Polifenóis , Emulsões/química , Polifenóis/análise , Antioxidantes/química , Farinha , Fenômenos QuímicosRESUMO
In this study, an ultrasonic-assisted alkaline method was used to remove proteins from wastewater generated during oil-body extraction, and the effects of different ultrasonic power settings (0, 150, 300, and 450 W) on protein recovery were investigated. The recoveries of the ultrasonically treated samples were higher than those of the samples without ultrasonic treatment, and the protein recoveries increased with increasing power, with a protein recovery of 50.10 % ± 0.19 % when the ultrasonic power was 450 W. Amino acid analysis showed that the amino acids comprising the recovered samples were consistent, regardless of the ultrasonic power used, but significant differences in the contents of amino acids were observed. No significant changes were observed in the protein electrophoretic profile using dodecyl polyacrylamide gel, indicating that sonication did not change the primary structures of the recovered samples. Fourier transform infrared and fluorescence spectroscopy revealed that the molecular structures of the samples changed after sonication, and the fluorescence intensity increased gradually with increasing sonication power. The contents of α-helices and random coils obtained at an ultrasonic power of 450 W decreased to 13.44 % and 14.31 %, respectively, whereas the ß-sheet content generally increased. The denaturation temperatures of the proteins were determined using differential scanning calorimetry, and ultrasound treatment reduced the denaturation temperatures of the samples, which was associated with the structural and conformational changes caused by their chemical bonding. The solubility of the recovered protein increased with increasing ultrasound power, and a high solubility was essential in good emulsification. The emulsification of the samples was improved well. In conclusion, ultrasound treatment changed the structure and thus improved the functional properties of the protein.
Assuntos
Gotículas Lipídicas , Águas Residuárias , Proteínas , Solubilidade , AminoácidosRESUMO
The synergistic effect of epigallocatechin-3-gallate (E) and quercetin (Q) enhances the therapeutic efficacy on related diseases; however, the instability and lower bioavailability of E and Q limited their application. Therefore, E and Q were co-encapsulated in hydrogel beads (H) with sodium alginate (SA) and soybean protein isolate (SPI) to improve their stability and bioavailability. The anti-inflammatory effect and molecular mechanism of action of E and Q co-loaded H in inflammatory bowel disease (IBD) were also investigated. The results showed that EQH-treated macrophages produced the lowest NO and TNF-α at 18.64 µmol L-1 and 5855.25 ng mL-1, respectively. The protein expression of p-NF κB-p65 was the lowest in EQH, indicating that EQH inhibits the activation of the pro-inflammatory NF-κB signaling pathway. The colon length of IBD model rats fed EH, QH, and EQH increased; histological analysis revealed intact layers of colonic epithelial cells with no observable tissue damage. The TNF-α and IL-1ß levels in the plasma of the EQH-treated rats decreased, indicating the inhibition of the TLR4 and NF-κB signaling pathways, and Q's level in the colon was the highest at 0.04 mg mL-1. This study provides a theoretical basis for the application of E and Q in IBD.
Assuntos
Doenças Inflamatórias Intestinais , NF-kappa B , Ratos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Quercetina/farmacologia , Quercetina/uso terapêutico , Fator de Necrose Tumoral alfa/genética , Hidrogéis , Doenças Inflamatórias Intestinais/tratamento farmacológicoRESUMO
This study aimed to evaluate the gelation characteristics of soybean protein hydrolysate (SPH) extracted by enzyme-assisted aqueous extraction. Specifically, the changes in gelation behaviors for heat-induced (95 °C, 20 min) SPH dispersions treated with pH (pH 3, 5, 9; pH 7 as control) and ultrasound (U; 240 W, 30 min) were investigated. The results showed that typical gel behavior with high elastic nature in the viscoelasticity and network structures were observed during the heating process, where the disulfide bond played a dominant role in the gel network formation of all the samples. Notably, the heat-induced aggregation in the SPH gels was mainly formed by the association of the basic B polypeptide in 11S and ß subunit in 7S. The most superior SPH gel was formed at pH 7 when assisted by ultrasonication during the heating process. This as-synthesized gel showed a uniform filamentous structure and exhibited the more excellent textural, rheological and thermal properties than those of the samples formed under acidic and alkaline conditions. These results are of great value in revealing the gelation mechanism of SPH.
Assuntos
Glycine max , Temperatura Alta , Glycine max/química , Hidrolisados de Proteína , Concentração de Íons de Hidrogênio , Géis/químicaRESUMO
Dietary polyphenols with great antidiabetic effects are the most abundant components in edible products. Dietary polyphenols have attracted attention as dipeptidyl peptidase-IV (DPP-IV) inhibitors and indirectly improve insulin secretion. The DPP-IV inhibitory activities of dietary polyphenols depend on their structural diversity. Screening methods that can be used to rapidly and accurately identify potential polyphenol DPP-IV inhibitors are urgently needed. This review focuses on the relationship between the structures of dietary polyphenols and their DPP-IV inhibitory effects. Different characterization methods used for polyphenols as DPP-IV inhibitors have been summarized and compared. We conclude that the position and number of hydroxyl groups, methoxy groups, glycosylated groups, and the extent of conjugation influence the efficiency of inhibition of DPP-IV. Various combinations of methods, such as in-vitro enzymatic inhibition, ex-vivo/in-vivo enzymatic inhibition, cell-based in situ, and in-silico virtual screening, are used to evaluate the DPP-IV inhibitory effects of dietary polyphenols. Further investigations of polyphenol DPP-IV inhibitors will improve the bioaccessibility and bioavailability of these bioactive compounds. Exploration of (i) dietary polyphenols derived from multiple targets, that can prevent diabetes, and (ii) actual binding interactions via multispectral analysis, to understand the binding interactions in the complexes, is required.
Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Humanos , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hipoglicemiantes/farmacologia , Relação Estrutura-Atividade , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismoRESUMO
Cinnamaldehyde is an essential oil extracted from the leaves, bark, roots and flowers of cinnamon plants (genus Cinnamomum). Cinnamaldehyde has shown biological functions such as antioxidants, antimicrobials, anti-diabetic, anti-obesity and anti-cancer. However, poor solubility in water as well as molecular sensitivity to oxygen, light, and high temperature limit the direct application of cinnamaldehyde. Researchers are using different encapsulation techniques to maximize the potential biological functions of cinnamaldehyde. Different delivery systems such as liposomes, emulsions, biopolymer nanoparticles, complex coacervation, molecular inclusion, and spray drying have been developed for this purpose. The particle size and morphology, composition and physicochemical properties influence the performance of each delivery system. Consequently, the individual delivery system has its advantages and limitations for specific applications. Given the essential role of cinnamaldehyde in functional food and food preservation, appropriate approaches should be applied in the encapsulation and application of encapsulated cinnamaldehyde. This review systematically analyzes available encapsulation techniques for cinnamaldehyde in terms of their design, properties, advantages and limitations, and food application status. The information provided in this manuscript will assist in the development and widespread use of cinnamaldehyde-loaded particles in the food and beverage industries.
Assuntos
Anti-Infecciosos , Óleos Voláteis , Óleos Voláteis/química , Cinnamomum zeylanicum/química , Acroleína/químicaRESUMO
Tyrosinase-catalyzed synthesis of soy 7S/11S-phlorizin conjugates was performed, and the reaction sites, conformation alterations and functional properties of complexes were evaluated using proteomic, in combination with multispectral technologies. Phlorizin was conjugated to 7S/11S primarily via residues of Lys, Cys, His and Arg residues. The phlorizin binding equivalents and decreased contents of free and total sulfhydryl groups and free amino groups confirmed the covalent interaction in the 7S/11S-phlorizin complexes. Conjugation with phlorizin promoted the conversion of α-helix to ß-sheet and ß-turn, with simultaneous transformation of the microenvironments around Trp and Tyr residues to hydrophilic and hydrophobic microenvironments, respectively, and lowering of the surface hydrophobicity of 7S/11S. The DPPH and ABTS radical scavenging abilities and α-glucosidase inhibitory activities of 7S/11S were increased by three-, two- and three-fold after the covalent binding of phlorizin. The study provided an ideal tyrosinase-catalyzed approach to fabricate custom-tailored nutritional soy protein-polyphenol products.
Assuntos
Globulinas , Proteínas de Soja , Proteínas de Soja/química , Globulinas/química , Proteínas de Armazenamento de Sementes/química , Monofenol Mono-Oxigenase/metabolismo , Florizina , Antígenos de Plantas/química , Proteômica , Sítios de Ligação , CatáliseRESUMO
The purpose of this study is to investigate the impact of varied oil body (OB) concentrations and interfacial compositions on the network topology and rheological and functional aspects of composite whey protein isolate (WPI) gels. Particle size and ζ-potential analyzes of the mixed gel solutions containing the OBs extracted at pH 6.8 (6.8-OB) and 11.0 (11.0-OB) revealed a greater aggregation in the 6.8-OB-containing mixed gel solution. 6.8-OB and 11.0-OB generated particle aggregates and oil-drop-embedded network architectures in the WPI gel, respectively. FT-IR analyses showed that OBs stabilized the protein gels' polymeric matrix by hydrogen bonding, steric hindrance, and hydrophobic interactions. Rheology and texture showed that OBs hardened gels. Low-field nuclear magnetic resonance showed that excessive inclusion of OBs (30% of 6.8-OB and 35% of 11.0-OB) compromised gel integrity and freeze-thaw stability. This study found that OBs can be active fillers in protein gels for functional meals.
RESUMO
Oil-in-water emulsions are widely used in the food industry; however, lipids are often easily oxidized, which may adversely affect food quality. Herein, we investigated the effects of alkali treatment, free radical induction, and carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS)-mediated synthetic methods on the structures and antioxidant properties of soy protein isolate (SPI)-gallic acid (GA) conjugates and the physical stabilities and protein-lipid co-oxidation properties of the resulting emulsions. These three methods are well established; however, their effects on the same protein-phenolic compound system have not been directly compared. Additionally, the co-oxidation of proteins and oils in emulsions remains unexplored. Alkali treatment yielded superior antioxidant properties compared to those obtained using free radicals or EDC/NHS, as this method was more likely to yield CS bonds and resulted in an increased quantity of grafted GA. Spectroscopic analysis showed that alkali treatment promoted GA oxidation and thereby increased GA-protein interactions and the quenching of tryptophan fluorescence. Correspondingly, EDC/NHS-mediated conjugation retained the activity of the hydroxyl groups of GA to the largest extent. Moreover, the grafting of GA improved the physical and oxidative stabilities of the emulsions. In particular, EDC/NHS-mediated conjugation produced an emulsion with optimal oxidative stability owing to its effective inhibition of lipid and protein oxidation. Conversely, the conjugates synthesized via alkali treatment and free radical induction displayed less inhibition of lipid oxidation and promoted protein oxidation. In conclusion, optimized protein-phenolic compound conjugates for use in developing nutritional fortification products with longer shelf lives can be obtained by using appropriate synthetic methods.
Assuntos
Polifenóis , Proteínas de Soja , Emulsões , Antioxidantes , Ácido Gálico , Fenóis , Óleos de Plantas , ÁlcalisRESUMO
The stabilities and levels of protein-lipid co-oxidation of algae oil-in water (O/W) emulsions coated with the soybean protein 7S/11S or their rutin covalent conjugates were studied during storage. After 96 h of storage, the emulsions stabilized with the covalent conjugates exhibited decreased droplets sizes and ζ-potentials and increased concentrations of adsorbed proteins. Therefore, the covalent binding of rutin in different mixing ratios (at 7S/11S:rutin molar ratios of 1:10 and 1:20) improved the physical stabilities of the emulsions compared with those of the emulsions stabilized by native 7S/11S. The 7S/11S-rutin covalent conjugates, which formed interfacial barriers and exhibited good free radical scavenging properties, inhibited protein oxidation (with lower contents of protein carbonyls, N'-formyl-L-kynurenine, and Schiff bases, and decreased intensities of intrinsic tryptophan fluorescence) and lipid oxidation (with lower contents of lipid hydroperoxide and malondialdehyde) as storage time increased. The electronic nose test distinguished the flavor characteristics of the emulsions coated with different protein-based stabilizers. These results reveal the viability of utilizing soybean protein-rutin conjugates in protein-stabilized algae oil-fortified emulsions with enhanced storability.
Assuntos
Rutina , Proteínas de Soja , Emulsões , Metabolismo dos Lipídeos , Peróxidos LipídicosRESUMO
The mechanisms underlying the interaction between different dietary flavonoids and soybean ß-conglycinin (7S) and glycinin (11S) were comparatively investigated, and the alterations in conformation and function of the complexes were further evaluated. Among the 23 flavonoids studied, 3 flavonoids with glycosides with the top three ranked T Scores in molecular docking analysis-phlorizin, luteoloside, and vitexin-4'-O-glucoside-with the highest binding affinity to 7S and 11S and quenched their intrinsic fluorescence in a static manner. The binding interactions of these flavonoids to 7S and 11S were structure dependent. Hydrophobic forces played important roles in interactions between 7S and both luteoloside and vitexin-4'-O-glucoside, whereas the binding of phlorizin to 7S, and of the three flavonoids to 11S, was driven by hydrogen bonding and van der Waals forces. The binding of these flavonoids interfered with the microenvironment around tyrosine and tryptophan, thereby altering the secondary structures of 7S and 11S. The binding of the three flavonoids enhanced solubility, emulsifying properties, thermal stability, and antioxidant capacity of 7S and 11S. The use of flavonoids could facilitate the design of soybean protein-based products with desirable functional properties.
Assuntos
Antioxidantes , Proteínas de Soja , Antígenos de Plantas , Globulinas , Glucosídeos , Simulação de Acoplamento Molecular , Florizina , Polifenóis , Proteínas de Armazenamento de Sementes , Proteínas de Soja/química , Triptofano , TirosinaRESUMO
In this study, we investigated the spray-drying microencapsulation of ß-carotene in oil co-stabilized by soy protein isolate-epigallocatechin-3-gallate conjugate (SPE) and small molecule surfactants [sodium dodecyl sulfate (SDS), hexadecyl trimethyl ammonium bromide (CTAB), and tea saponin (TS)] of different concentrations [0.1, 0.5, and 1.0% (w/v)], as a prospective approach to stabilize ß-carotene. The results show that different surfactant types and concentrations significantly affect the encapsulation efficiency, water dispersibility, microstructure, and digestion of the microcapsules. Interactions between the surfactants and the SPE at the interface were found to include both synergistic and competitive effects, and they depended on the surfactant type and concentration. Moreover, the addition of SDS and TS before spray drying significantly improved the microencapsulation performance of the microcapsules and the water dispersion behavior of the corresponding spray-dried powders. The highest encapsulation efficiency was achieved for the SPE-0.1TS-encapsulated ß-carotene microcapsules. In contrast, the addition of CTAB was not conducive to microcapsule formation, resulting in poor encapsulation efficiency, water dispersibility, thermal stability, ß-carotene retention rate, and oxidation stability. In vitro gastrointestinal digestion results revealed that the addition of CTAB promotes the release of ß-carotene and improves the bioaccessibility of ß-carotene. In contrast, except for SPE-1.0SDS, the addition of SDS and TS inhibited ß-carotene release and reduced ß-carotene bioaccessibility. This study demonstrated that this novel ß-carotene encapsulation formulation can overcome stability limitations for the development of ß-carotene supplements with a high bioaccessibility.