Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446044

RESUMO

The walnut is an important nut that has numerous uses worldwide. However, due to dwarf and close plantation methods as well as continuous cloudy or rainy days that occur during periods of walnut oil accumulation, the walnut fruit exhibits varying degrees of stress under low-light conditions. However, the effects of shade on metabolites and genes in walnut embryos remain unclear in the literature. The purpose of this study is to investigate the lipid biosynthesis process that occurs in walnut embryos under shade treatment via the use of metabolomics and transcriptomics analyses. The results indicate that the oil content decreases significantly under shaded conditions, while the protein content increases significantly. The expression levels of fatty acid desaturase 2 (FAD2) and stearoyl-ACP-desaturase (SAD) involved in the lipid biosynthesis mechanism were significantly reduced in the shaded group, which resulted in reductions in oleic (C18:1), linoleic (C18:2), and α-linolenic (C18:3) acids. The reduced oil content was consistent with the downregulation of genes associated with the lipid biosynthesis mechanism. In the amino acid biosynthesis process, the upregulated cysteine synthase (cscK) and anthranilate synthase beta subunit 2 (trpG) genes promoted the accumulation of L-aspartic acid and L-citrulline. The increase in protein content was consistent with the upregulation of genes related to amino acid biosynthesis. Thus, our study provides new insights into the regulatory mechanisms of shade underlying overall walnut fruit quality.


Assuntos
Juglans , Juglans/genética , Juglans/química , Nozes/química , Transcriptoma , Lipídeos/análise , Metabolômica , Aminoácidos/genética
2.
J Plant Physiol ; 287: 154050, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37441911

RESUMO

Browning is a crucial factor affecting the quality of fresh-cut apples. A safe, simple, and effective method to inhibit browning is urgently needed in fresh-cut apple production. We carried out this study to explore the effect mechanism of exogenous selenium (Se) fertilizer on fresh-cut apple browning. During the development of apples, 0.75 kg/plant Se fertilizer was exerted on the 'Fuji' apple tree at the critical stage of the young fruit stage (late May), early fruit expansion stage (late June), and fruit expansion stage (late July), an equal amount of Se-free organic fertilizer was used as control. Polyphenol oxidase (PPO), peroxidase (POD), and phenylalanine ammonia-lyase (PAL) activities, phenolic and malondialdehyde (MDA) content, antioxidant enzymes activity, and DPPH free radical scavenging rate of the apple at different development stages were investigated. The highest Se accumulation efficiency was observed in apple fruit one month after applying Se fertilizer, which was 41.1%. Se-rich apples exhibited a more remarkable ability to resist browning than control after fresh-cut. The anti-browning effect of the fertilization group (M7) was the best, the PPO activity decreased to 0.5 × 103 U kg-1, and the browning index was 28.6. The total Se content (TSC) of 331.4 µg kg-1 DW and organic Se content (OSC) of 292.0 µg kg-1 DW were the highest in the apple samples, reached the classification standard of Se content in Se-rich food. The correlation analysis found that fresh-cut apple browning was closely related to antioxidant capacity and PPO activity. The stronger the antioxidant capacity of fresh-cut apples treated with Se fertilizer, the lower their browning degree. Therefore, exogenous Se can alleviate fresh-cut apples browning by improving antioxidant capacity and reducing PPO activity. Se-rich apples could increase the Se content of the human essential trace element and inhibit the browning of fresh-cut apples, which would become a new, safe and effective way to solve the fresh-cut apples browning.


Assuntos
Malus , Selênio , Humanos , Antioxidantes/farmacologia , Frutas/química , Selênio/farmacologia , Fertilizantes/análise , Catecol Oxidase
3.
Front Plant Sci ; 14: 1176936, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223812

RESUMO

Enzymatic browning has a considerable negative impact on the acceptability and marketability of freshly cut apples. However, the molecular mechanism by which selenium (Se) positively affects freshly cut apples in this regard is not yet clear. In this study, 0.75 kg/plant of Se-enriched organic fertilizer was applied to "Fuji" apple trees during the young fruit stage (M5, May 25), the early fruit enlargement stage (M6, June 25), and the fruit enlargement stage (M7, July 25), respectively. The same amount of Se-free organic fertilizer was applied as a control. Herein, the regulatory mechanism by which exogenous Se exerts its anti-browning effect in freshly cut apples was investigated. The results showed that the M7 treatment applied in Se-reinforced apples could remarkably inhibit their browning at 1 h after being freshly cut. Additionally, the expression of polyphenol oxidase (PPO) and peroxidase (POD) genes treated with exogenous Se was significantly reduced compared to controls. Moreover, the lipoxygenase (LOX) and phospholipase D (PLD) genes, which are involved in membrane lipid oxidation, were expressed at higher levels in the control. The gene expression levels of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), and ascorbate peroxidase (APX) were upregulated in the different exogenous Se treatment groups. Similarly, the main metabolites measured during the browning process were phenols and lipids; thus, it could be speculated that the mechanism by which exogenous Se produces its anti-browning effect may be by reducing phenolase activity, improving the antioxidant capacity of the fruits, and alleviating membrane lipid peroxidation. In summary, this study provides evidence regarding and insight into the response mechanism employed by exogenous Se to inhibit browning in freshly cut apples.

4.
Int J Biol Macromol ; 242(Pt 2): 124790, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37169049

RESUMO

Apple growth and yield are largely dependent on plant height and flowering characteristics. The BELL1-like homeobox (BLH) transcription factors regulate extensive plant biological processes. However, the BLH-mediated regulation of plant height and flowering in apple remains elusive. In the current study, 19 members of the MdBLH family were identified in the apple genome. Segmental duplication and purifying selection are the main reasons for the evolution of the MdBLH genes. A BLH1-like gene, MdBLH14, was isolated and functionally characterized. The MdBLH14 was preferentially expressed in flower buds, and downregulated during the floral induction period. The subcellular localization in tobacco leaves indicated that MdBLH14 is a nuclear protein. Overexpression of MdBLH14 in Arabidopsis led to a significant dwarfing and late-flowering phenotype by hindering active GA accumulation. Additionally, MdKNOX19, another member of the TALE superfamily, physically interacts with MdBLH14 and synergistically inhibits the expression of MdGA20ox3. This is the first report on the function of the MdBLH14 from apple, and its mechanism involving plant flower induction and growth. The data presented here provide a theoretical basis for genetically breeding new apple varieties.


Assuntos
Arabidopsis , Malus , Malus/genética , Malus/metabolismo , Genes Homeobox , Melhoramento Vegetal , Flores/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA