RESUMO
DP303c is a HER2-targeted ADC with a cleavable linker-MMAE payload. Previous in vitro studies demonstrated that DP303c showed similar or better antitumor activity than T-DM1 in xenograft models. This was a multicenter, dose escalation and dose expansion phase 1 study in China. Eligible patients were 18-75 years old with HER2-positive advanced solid tumors who were unable to benefit from standard therapy. DP303c was administered intravenously every 3 weeks, with accelerated titration at lower dose of 0.5 mg/kg and 3 + 3 design with dose levels of 1.0, 2.0, 3.0 or 4.0 mg/kg at dose escalation part, followed by the selected dose level at dose expansion part. The primary endpoints were safety and tolerability, as well as identification of recommended phase 2 dose. As of Feb 28, 2023, 94 patients were enrolled and received DP303c (dose escalation: n = 22; dose expansion: n = 72), of whom 68 patients had breast cancer. One dose limiting toxicity (Grade 3 eye pain) was observed at 4.0 mg/kg dose, and the maximum tolerated dose was not reached. The most common treatment-related adverse events at grade 3 or higher were blurred vison (16.0%), dry eye (6.4%), and peripheral neuropathy (5.3%). No treatment-related death occurred. Overall, among 91 efficacy evaluable patients, 39 patients (42.9%) achieved an objective response. Disease control was observed in 62 patients (68.1%). In 66 efficacy evaluable patients with breast cancer, 34 patients achieved an objective response (51.5%). Disease control was achieved in 51 patients (77.3%). Median PFS was 6.4 months. On a molar basis, DP303c Cmax at 3.0 mg/kg doses was 132-folder higher than that for free MMAE. DP303c demonstrated promising anti-tumor activity with acceptable safety in patients with pre-treated advanced HER2 positive solid tumors, especially in breast cancer. Based on safety and efficacy results, 3.0 mg/kg Q3W was determined as recommended phase 2 dose for DP303c. (Trial registration: ClinicalTrials.gov Identifier: NCT04146610).
RESUMO
A novel hydrogen-bonded supramolecular crown-ether-based inclusion compound, [(DL-α-Phenylglycine)(18-crown-6)]+[(CoCl4)0.5]-(1), was obtained via evaporation in a methanolic solution at room temperature using DL-α-phenylglycine, 18-crown-6, cobalt chloride (CoCl2), and hydrochloric acid. Its structure, thermal properties, and electrical properties were characterized via elemental analysis, single-crystal X-ray diffraction, variable-temperature infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and variable temperature-variable frequency dielectric constant testing. The compound was a monoclinic crystal system in the C2 space group at low temperature (100 K) and room temperature (293 K). Analysis of the single crystal structure showed that [(CoCl4)0.5]- presented an edge-sharing ditetrahedral structure in the disordered state, while the protonated DL-α-phenylglycine molecule in the disordered state and intramolecular hydroxyl group (-OH) underwent dynamic rocking, causing a significant stretching motion of the O-H···Cl-type one-dimensional hydrogen bond chain. This resulted in dielectric anomalies in the three axes of the crystal, thus showing significant dielectric anisotropy.
RESUMO
Apetala2/ethylene response factor (AP2/ERF) is one of the largest families of transcription factors, regulating growth, development, and stress response in plants. Several studies have been conducted to clarify their roles in Arabidopsis and rice. However, less research has been carried out on maize. In this review, we systematically identified the AP2/ERFs in the maize genome and summarized the research progress related to AP2/ERF genes. The potential roles were predicted from rice homologs based on phylogenetic and collinear analysis. The putative regulatory interactions mediated by maize AP2/ERFs were discovered according to integrated data sources, implying that they involved complex networks in biological activities. This will facilitate the functional assignment of AP2/ERFs and their applications in breeding strategy.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Filogenia , Melhoramento Vegetal , Etilenos , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Arabidopsis/genéticaRESUMO
GC20, a novel soluble bis-chelated gold(I)-diphosphine compound, has been reported as a promising anticancer candidate. Assessing the pharmacokinetic properties of GC20 is critical for its medicinal evaluation. First, a sensitive and specific liquid chromatography tandem mass spectrometry (LC-MS/MS) was developed and well validated to determine GC20 in rat plasma and rat tissue homogenate after one step protein precipitation. Chromatographic separation was achieved on an Angilent ZORBAX-C18 column (3.5 µm, 2.1 × 50 mm) with gradient elution and mass spectrometry was performed on a triple quadrupole in positive ion mode using an electrospray ionization source. This method was then applied to investigate the pharmacokinetics and tissue distribution of GC20 in rats after intravenous administration. The results showed that the plasma exposure of GC20 in vivo increased with increasing doses after a single dose. However, after multiple doses, a significant accumulation and a saturation at elimination were observed for GC20 in rats. Moreover, after intravenous administration, GC20 was widely distributed in various tissues, with the highest levels in the lung, spleen, liver, and pancreas, followed by the kidney and heart, while the lowest level was found in the brain. This is the first report on the pharmacokinetic properties of GC20.
Assuntos
Quelantes/farmacocinética , Ouro , Fosfinas/farmacocinética , Animais , Quelantes/química , Cromatografia Líquida , Ouro/química , Estrutura Molecular , Fosfinas/química , Ratos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem , Distribuição TecidualRESUMO
Raddeanin A, one of the triterpenoid saponins extracted from Anemone raddeana rhizome of the Ranunculaceae family, has demonstrated the ability to inhibit the growth of human hepatic and gastric cancer cells. However, the effects of Raddeanin A on human colon cancer cells have not been investigated extensively. The present study aimed to examine the antiproliferative and apoptosis-inducing effects of Raddeanin A on the HCT-116 human colon cancer cell line in vitro, and evaluate the pharmacokinetic and biodistribution properties of Raddeanin A in mice following a single oral administration. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to assess the in vitro cytotoxicity of Raddeanin A against HCT-116 cells. 4',6-Diamidino-2-phenylindole, dihydrochloride staining and flow cytometry were performed to further examine the apoptosis-inducing capability of Raddeanin A. The concentrations of Raddeanin A in the plasma and tissues were analyzed using liquid chromatography-tandem mass spectrometry. Raddeanin A showed a dose-dependent antiproliferative effect towards the HCT-116 cells, with a half maximal inhibitory concentration of ~1.4 µM. Treatment with Raddeanin A resulted in a significant induction of apoptosis, observed as apparent morphological changes of the nuclei, with a total apoptotic ratio of 41.8% at a concentration of 3 µM. Low concentrations of Raddeanin A were detected in the heart, liver, spleen, lung, kidney and plasma of the mice following oral administration, however, the majority of the Raddeanin A was distributed in the intestinal tract, particularly in the colon and caecum. These present study confirmed the growth-inhibitory and apoptosis-inducing effects of Raddeanin A on HCT-116 cells and performed preliminary examinations of its pharmacokinetic properties, which provide a foundation for further investigating the inhibitory mechanism on the colon cancer cells in vivo.
RESUMO
The present study describes for the first time, a metabolic profile reflecting the osteoporosis progression in 364 pre- and postmenopausal Chinese women using GC-MS. In order to accurately evaluate the dynamic changes of metabolites along with estrogen deficiency and osteoporosis progression, we divided these subjects into the following four groups: premenopausal women with normal bone mass density (BMD, group I), postmenopausal women with normal BMD (group II), postmenopausal women with osteopenia (group III) and postmenopausal women with osteoporosis (group IV), according to their menopause or low BMD status. Principal component analysis (PCA) and Partial least squares-discriminant analysis (PLS-DA) were used to evaluate the associations of metabolic changes with low BMD or estrogen deficiency. Twelve metabolites identified by the PLS-DA model were found to be able to differentiate low BMD groups from normal BMD groups. Of the 12 metabolites, five free fatty acids (LA, oleic acid, AA and 11,14-eicosadienoic acid) have the most potential to be used as osteoporosis biomarkers due to their better correlations with BMD, and high sensitivity and specificity in distinguishing the low BMD groups from the normal BMD groups calculated by the receiver operating characteristic curve (ROC). The lipid profile may be useful for osteoporosis prediction and diagnosis.