Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 15(1): 217, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39020406

RESUMO

BACKGROUND: Intrauterine adhesions (IUAs) jeopardise uterine function in women, which is a great challenge in the clinic. Previous studies have shown that endometrial perivascular cells (En-PSCs) can improve the healing of scarred uteri and that hydroxysafflor yellow A (HSYA) promotes angiogenesis. The purpose of this study was to observe whether the combination of En-PSCs with HSYA could improve the blood supply and fertility in the rat uterus after full-thickness injury. METHODS: En-PSCs were sorted by flow cytometry, and the effect of HSYA on the proliferation and angiogenesis of the En-PSCs was detected using CCK-8 and tube formation assays. Based on a previously reported rat IUA model, the rat uteri were sham-operated, spontaneously regenerated, or treated with collagen-loaded PBS, collagen-loaded HSYA, collagen-loaded En-PSCs, or collagen-loaded En-PSCs with HSYA, and then collected at both 30 and 90 days postsurgery. HE staining and Masson staining were used to evaluate uterine structure and collagen fibre deposition, and immunohistochemical staining for α-SMA and vWF was used to evaluate myometrial regeneration and neovascularization in each group. A fertility assay was performed to detect the recovery of pregnancy function in each group. RNA-seq was performed to determine the potential mechanism underlying En-PSCs/HSYA treatment. Immunofluorescence, tube formation assays, and Western blot were used to validate the molecular mechanism involved. RESULTS: The transplantation of Collagen/En-PSCs/HSYA markedly promoted uterine repair in rats with full-thickness injury by reducing fibrosis, increasing endometrial thickness, regenerating myometrium, promoting angiogenesis, and facilitated live births. RNA sequencing results suggested that En-PSCs/HSYA activated the NRG1/ErbB4 signaling pathway. In vitro tube formation experiments revealed that the addition of an ErbB inhibitor diminished the tube formation ability of cocultured En-PSCs and HUVECs. Western blot results further showed that elevated levels of NRG1 and ErbB4 proteins were detected in the Collagen/En-PSCs/HSYA group compared to the Collagen/En-PSCs group. These collective results suggested that the beneficial effects of the transplantation of Collagen/En-PSCs/HSYA might be attributed to the modulation of the NRG1/ErbB4 signaling pathway. CONCLUSIONS: The combination of En-PSCs/HSYA facilitated morphological and functional repair in rats with full-thickness uterine injury and may promote endometrial angiogenesis by regulating the NRG1/ErbB4 signaling pathway.


Assuntos
Chalcona , Endométrio , Quinonas , Útero , Animais , Feminino , Ratos , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Humanos , Útero/efeitos dos fármacos , Útero/metabolismo , Chalcona/análogos & derivados , Chalcona/farmacologia , Quinonas/farmacologia , Quinonas/uso terapêutico , Ratos Sprague-Dawley , Neovascularização Fisiológica/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Transplante de Células-Tronco/métodos , Proliferação de Células/efeitos dos fármacos , Regeneração/efeitos dos fármacos
2.
Clin Exp Med ; 24(1): 127, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869635

RESUMO

Thyroid carcinoma (TC), the most commonly diagnosed malignancy of the endocrine system, has witnessed a significant rise in incidence over the past few decades. The integration of scRNA-seq with other sequencing approaches offers researchers a distinct perspective to explore mechanisms underlying TC progression. Therefore, it is crucial to develop a prognostic model for TC patients by utilizing a multi-omics approach. We acquired and processed transcriptomic data from the TCGA-THCA dataset, including mRNA expression profiles, lncRNA expression profiles, miRNA expression profiles, methylation chip data, gene mutation data, and clinical data. We constructed a tumor-related risk model using machine learning methods and developed a consensus machine learning-driven signature (CMLS) for accurate and stable prediction of TC patient outcomes. 2 strains of undifferentiated TC cell lines and 1 strain of PTC cell line were utilized for in vitro validation. mRNA, protein levels of hub genes, epithelial-mesenchymal transition (EMT)-associated phenotypes were detected by a series of in vitro experiments. We identified 3 molecular subtypes of TC based on integrated multi-omics clustering algorithms, which were associated with overall survival and displayed distinct molecular features. We developed a CMLS based on 28 hub genes to predict patient outcomes, and demonstrated that CMLS outperformed other prognostic models. TC patients of relatively lower CMLS score had significantly higher levels of T cells, B cells, and macrophages, indicating an immune-activated state. Fibroblasts were predominantly enriched in the high CMLS group, along with markers associated with immune suppression and evasion. We identified several drugs that could be suitable for patients with high CMLS, including Staurosporine_1034, Rapamycin_1084, gemcitabine, and topotecan. SNAI1 was elevated in both undifferentiated TC cell lines, comparing to PTC cells. Knockdown of SNAI1 reduced the cell proliferation and EMT phenotypes of undifferentiated TC cells. Our findings highlight the importance of multi-omics analysis in understanding the molecular subtypes and immune characteristics of TC, and provide a novel prognostic model and potential therapeutic targets for this disease. Moreover, we identified SNAI1 in mediating TC progression through EMT in vitro.


Assuntos
Transição Epitelial-Mesenquimal , Fatores de Transcrição da Família Snail , Neoplasias da Glândula Tireoide , Humanos , Transição Epitelial-Mesenquimal/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Prognóstico , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Aprendizado de Máquina , Transcriptoma , Multiômica
3.
Placenta ; 36(10): 1148-52, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26303759

RESUMO

INTRODUCTION: Placental dysfunction and increased inflammation are believed to underlie the pathogenesis of severe preeclampsia (PE). High-mobility group box 1 (HMGB1), a recently identified inflammatory cytokine, has been known to contribute to the development of inflammatory responses in PE. This study intends to elucidate the mechanisms of HMGB1-RAGE signaling pathway in the pathogenesis of PE. METHODS: The mRNA levels of relative gene of HMGB1 pathway, HMGB1, RAGE and NF-κB p65, were analyzed by real-time PCR in placentas collected from 61 normotensive pregnant women and 64 women with severe PE. Additionally, levels of HMGB1 and RAGE protein were detected in frozen placental specimens by western blot, and the locations of them were evaluated in the well-characterized tissue microarray by immunohistochemistry. ELISA was further used to detect HMGB1 level in maternal serum. RESULTS: Compared with matched control placentas, the mRNA levels of HMGB1, RAGE and NF-κB p65 were increased in severe preeclamptic placentas. In severe preeclamptic placentas, HMGB1 and RAGE immunoreactivity were increased in the cytoplasm of trophoblast cells. Western blot was employed to further confirm that RAGE protein level was elevated significantly in severe PE group. In addition, there was an increased level of HMGB1 in the maternal serum of severe PE group. DISCUSSION: HMGB1 nuclear-cytoplasmic translocation may induce the binding of HMGB1 to its receptors, consequently, intrigue NF-κB activity in severe PE. HMGB1-RAGE signaling pathway may be involved in the pathogenesis of PE.


Assuntos
Proteína HMGB1/sangue , Placenta/metabolismo , Pré-Eclâmpsia/sangue , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Fator de Transcrição RelA/metabolismo , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Gravidez , Transdução de Sinais
4.
BMC Cancer ; 14: 643, 2014 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-25176041

RESUMO

BACKGROUND: Although several single-nucleotide polymorphisms in microRNA (miRNA) genes have been associated with primary hepatocellular carcinoma, published findings regarding this relationship are inconsistent and inconclusive. METHODS: The high-resolution melting (HRM) analysis was used to determine whether the occurrence of the SNPs of miR-146a C > G (rs2910164), miR-196a2 C > T (rs11614913), miR-301b A > G (rs384262), and miR-499 C > T (rs3746444) differs in frequency-matched 314 HCC patients and 407 controls by age and sex. RESULTS: The groups' genotype distributions of miR-196a2 C > T and miR-499 C > T differed significantly (P < 0.01), both of them increased the risk of HCC in different dominant genetic models (P < 0.01); compared with individuals carrying one or neither of the unfavorable genotypes, individuals carrying both unfavorable genotypes (CT + CC) had a 3.11-fold higher HCC risk (95% confidence interval (CI), 1.89-5.09; P = 7.18 × 10-6). Moreover, the allele frequency of miR-499 C > T was significantly different between the two groups, and the HCC risk of carriers of the C allele was higher than that of carriers of the T allele (odds ratio, 1.53; 95% CI, 1.15-2.03; P = 0.003). Further, we found that the activated partial thromboplastin time (APTT) in HCC patients with miR-196a2 CC genotype was longer than patients with TT genotypes (P < 0.05), and HCC patients with miR-499 C allele had higher serum levels of direct bilirubin, globulin, γ-glutamyltranspeptidase, alkaline phosphatase, and lower serum cholinesterase (P < 0.05). CONCLUSIONS: Our findings suggest that the SNPs in miR-196a2 C > T and miR-499 C > T confer HCC risk and that affect the clinical laboratory characteristics of HCC patients.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/genética , Povo Asiático/genética , Estudos de Casos e Controles , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos
5.
PLoS One ; 8(10): e76967, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24143196

RESUMO

Increasing epidemiological evidence has indicated that inherited variations of mitochondrial DNA (mtDNA) copy number affect the genetic susceptibility of many malignancies in a tumour-specific manner and that DNA methylation also plays an important role in controlling gene expression during the differentiation and development of hepatocellular carcinoma (HCC). Our previous study demonstrated that HCC tissues showed a lower 5-hydroxymethylcytosine (5-hmC) content when compared to tumour-adjacent tissues, but the relationship among 5-hmC, 5-methylcytosine (5-mC) and mtDNA content in HCC patients is still unknown. This study aimed to clarify the correlation among mtDNA content, 5-mC and 5-hmC by quantitative real-time PCR and liquid chromatography tandem mass spectrometry analysis. We demonstrated that 5-hmC correlated with tumour size [odds ratio (OR) 0.847, 95% confidence interval (CI) 0.746-0.962, P = 0.011], and HCC patients with a tumour size ≥ 5.0 cm showed a lower 5-hmC content and higher levels of fasting plasma aspartate aminotransferase, the ratio of alanine aminotransferase to aspartate aminotransferase, γ-glutamyltransferase, alpha-fetoprotein than those with a tumour size <5 cm (all P<0.05). We further revealed that the mtDNA content of HCC tumour tissues was 225.97(105.42, 430.54) [median (25th Percentile, 75th Percentile)] and was negatively correlated with 5-mC content (P = 0.035), but not 5-hmC content, in genomic DNA from HCC tumour tissues.


Assuntos
5-Metilcitosina/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Citosina/análogos & derivados , DNA Mitocondrial/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/genética , Citosina/metabolismo , Feminino , Humanos , Cirrose Hepática/complicações , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/genética , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Carga Tumoral , Adulto Jovem
6.
Clin Chem ; 59(5): 824-32, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23344498

RESUMO

BACKGROUND: 5-Methylcytosine (5-mC) is an important epigenetic modification involved in development and is frequently altered in cancer. 5-mC can be enzymatically converted to 5-hydroxymethylcytosine (5-hmC). 5-hmC modifications are known to be prevalent in DNA of embryonic stem cells and neurons, but the distribution of 5-hmC in human liver tumor and matched control tissues has not been rigorously explored. METHODS: We developed an online trapping/capillary hydrophilic-interaction liquid chromatography (cHILIC)/in-source fragmentation/tandem mass spectrometry system for quantifying 5-mC and 5-hmC in genomic DNA from hepatocellular carcinoma (HCC) tumor tissues and relevant tumor adjacent tissues. A polymer-based hydrophilic monolithic column was prepared and used for the separation of 12 nucleosides by cHILIC coupled with an online trapping system. Limits of detection and quantification, recovery, and imprecision of the method were determined. RESULTS: Limits of detection for 5-mC and 5-hmC were 0.06 and 0.19 fmol, respectively. The imprecision and recovery of the method were determined, with the relative SDs and relative errors being <14.9% and 15.8%, respectively. HCC tumor tissues had a 4- to 5-fold lower 5-hmC content compared to tumor-adjacent tissues. In addition, 5-hmC content highly correlated with tumor stage (tumor-nodes-metastasis, P = 0.0002; Barcelona Clinic liver cancer, P = 0.0003). CONCLUSIONS: The marked depletion of 5-hmC may have profound effects on epigenetic regulation in HCC and could be a potential biomarker for the early detection and prognosis of HCC.


Assuntos
5-Metilcitosina/análise , Carcinoma Hepatocelular/química , Citosina/análogos & derivados , DNA de Neoplasias/análise , Neoplasias Hepáticas/química , Análise de Sequência de DNA/métodos , Biomarcadores/análise , Cromatografia Líquida/métodos , Citosina/análise , Metilação de DNA , Humanos , Limite de Detecção , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA