Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol ; 39(6): 3481-3499, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38456329

RESUMO

CONTEXT: Qi-dan-dihuang decoction (QDD) has been used to treat diabetic kidney disease (DKD), but the underlying mechanisms are poorly understood. OBJECTIVE: This study reveals the mechanism by which QDD ameliorates DKD. MATERIALS AND METHODS: The compounds in QDD were identified by high-performance liquid chromatography and quadrupole-time-of-flight tandem mass spectrometry (HPLC-Q-TOF-MS). Key targets and signaling pathways were screened through bioinformatics. Nondiabetic Lepr db/m mice were used as control group, while Lepr db/db mice were divided into model group, dapagliflozin group, 1% QDD-low (QDD-L), and 2% QDD-high (QDD-H) group. After 12 weeks of administration, 24 h urinary protein, serum creatinine, and blood urea nitrogen levels were detected. Kidney tissues damage and fibrosis were evaluated by pathological staining. In addition, 30 mmol/L glucose-treated HK-2 and NRK-52E cells to induce DKD model. Cell activity and migration capacity as well as protein expression levels were evaluated. RESULTS: A total of 46 key target genes were identified. Functional enrichment analyses showed that key target genes were significantly enriched in the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and mitogen-activated protein kinase (MAPK) signaling pathways. In addition, in vivo and in vitro experiments confirmed that QDD ameliorated renal fibrosis in diabetic mice by resolving inflammation and inhibiting the epithelial-mesenchymal transition (EMT) via the p38MAPK and AKT-mammalian target of rapamycin (mTOR) pathways. DISCUSSION AND CONCLUSION: QDD inhibits EMT and the inflammatory response through the p38MAPK and AKT/mTOR signaling pathways, thereby playing a protective role in renal fibrosis in DKD.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Medicamentos de Ervas Chinesas , Fibrose , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Medicamentos de Ervas Chinesas/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/patologia , Transdução de Sinais/efeitos dos fármacos , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Ratos , Rim/efeitos dos fármacos , Rim/patologia , Linhagem Celular , Ratos Sprague-Dawley , Camundongos , Humanos
2.
Ann Transl Med ; 10(24): 1392, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36660714

RESUMO

Background: Although cisplatin (DDP) is an important clinical anti-tumor drug, its use is limited by its nephrotoxicity. How to avoid the renal injury incurred by platinum drugs and improve the clinical efficiency of platinum drugs use has become an urgent clinical problem. Previous studies have verified that Chinese medicine has definite effects on acute kidney injury (AKI). Yishen Xiezhuo formula (YSXZ) is a traditional Chinese medicine (TCM) compound which is an effective clinical drug for AKI, but its mechanism remains unclear. Methods: In our research, an AKI model was induced by DDP in human renal tubular epithelial cell (HKC) lines in the in vitro study. The mechanism of the YSXZ on cell senescence was analyzed by Cell Counting Kit-8 (CCK-8), senescence-associated ß-galactosidase (SA-ß-Gal) staining, western blot, flow cytometry, and enzyme-linked immunosorbent assay (ELISA). Network pharmacology was used to analyze the role of YSXZ against AKI. Results: Compared with the control group, the cells in the DDP intervention group were significantly senescent. Compared with DDP group, YSXZ decreased the number of SA-ß-Gal-positive senescence cells, down regulated the expression of senescence-related proteins, reduced the release of senescence-related secreted phenotypic factors, and reversed the phenomenon of cell cycle S-phase arrest. Network pharmacology and experimental studies showed that the mitogen-activated protein kinase (MAPK) signaling pathway played a central role. Conclusions: Our present results suggested that YSXZ ameliorated the development of DDP-induced AKI by attenuating renal tubular epithelial cell (RTEC) senescence via alleviating the activation of MAPK pathway.

3.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(1): 118-124, 2020 Jan 30.
Artigo em Chinês | MEDLINE | ID: mdl-32376553

RESUMO

OBJECTIVE: To investigate the effects of total glucosides of paeony (TGP) on the proliferation and activation-induced cell death of mouse T cells and the mechanism underlying the immunosuppressive effects of TGP. METHODS: Purified total T cells isolated from the spleen of C57BL/6 mice were treated with TGP at 0, 50, 100, or 200 µg/mL and stimulated by anti-CD3/ CD28. Flow cytometry was performed to detect the cell death and the proliferation of CFSE-labeled T cells. The expression of Fas/FasL mRNA was detected using RT-PCR, and flow cytometry was used to analyze the expression of Fas/FasL proteins on activated T cells. Western blotting was used to detect the expression of Bcl-2 in the cells. RESULTS: TGP treatment for 48 h significantly reduced the total number and percentage of viable T cells and dose-dependently lowered the percentage of divided T cells. TGP treatment obviously up-regulated the cellular expression of Fas mRNA, enhanced Fas expression on the surface of the T cells, and decreased the expression level of Bcl-2 protein in the cells. CONCLUSIONS: TGP significantly inhibits proliferation and promotes activation-induced cell death of mouse T cell by increasing the expression of Fas and downregulating the expression of Bcl-2.


Assuntos
Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glucosídeos/farmacologia , Paeonia/química , Linfócitos T/efeitos dos fármacos , Animais , Proteína Ligante Fas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptor fas/metabolismo
4.
Arch Biochem Biophys ; 677: 108164, 2019 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-31678046

RESUMO

Excessive degradation of the cartilage articular extracellular matrix (ECM) in chondrocytes has been considered as an important pathological characteristics of OA. In the present study, we demonstrate that the G protein-coupled receptor GPR39 is expressed on SW1353 chondrocytes and is significantly downregulated in response to advanced glycation end products (AGEs). Our findings show that agonism of GPR39 exerts significant protective effects against AGE-induced degradation of articular extracellular matrix. Agonism of GPR39 rescued degradation of type II collagen by decreasing expression of the collagen-degrading enzymes matrix metalloproteinase (MMP)-3 and MMP-13. Additionally, agonism of GPR39 rescued AGE-induced suppression of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. Agonism of GPR39 prevented degradation of aggrecan by downregulating AGE-induced expression of a disintegrin and metalloproteinase with type I thrombospondin motif (ADAMTS)-4 and ADAMTS-5. Finally, we demonstrate that the effects of GPR39 are mediated through the p38 mitogen activated protein kinase (MAPK)/nuclear factor-κB (NF-κB) cellular signaling pathway. Taken together, our findings show for the first time that targeted therapies involving GPR39 may provide a novel approach for the prevention and treatment of osteoarthritis.


Assuntos
Matriz Extracelular/efeitos dos fármacos , Produtos Finais de Glicação Avançada/farmacologia , Substâncias Protetoras/farmacologia , Pirimidinas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Sulfonamidas/farmacologia , Agrecanas/química , Agrecanas/metabolismo , Linhagem Celular Tumoral , Colágeno Tipo II/química , Colágeno Tipo II/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloendopeptidases/metabolismo , Osteoartrite/tratamento farmacológico , Proteólise/efeitos dos fármacos , Receptores Acoplados a Proteínas G/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA