Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Clin Transl Med ; 13(7): e1326, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37462619

RESUMO

BACKGROUND: Skeletal muscle-secreted myokines widely participate in lipids metabolism through autocrine, paracrine and endocrine actions. The myokines represented by FGF21 and Irisin can promote the browning of adipocytes and serve as promising targets for treating obesity. Although recombinant myokines replacement therapy and AAV (adeno-associated virus)-based myokines overexpression have shown a definite effect in ameliorating obesity, novel myokine activation strategies with higher efficacy and safety are still in pressing need. This study aimed to evaluate the therapeutic potential of a novel CRISPR-based myokines activation strategy in obesity treatments. METHODS: In this study, we used lentivirus and a single AAV vector containing dCas9-VP64 with a single-guide RNA to selectively activate Fgf21 and Fndc5 expression in skeletal muscles both in vitro and in vivo. The activation efficacy of the CRISPRa system was determined by qRT-PCR, Western blotting and ELISA. The treatment effect of CRISPR-based myokines activation was tested in 3T3-L1-derived adipocytes and diet-induced obese (DIO) mice (male C57BL/6 mice, induced at 6-week-old for 10 weeks). RESULTS: The virus upregulates myokines expression in both mRNA and protein levels of muscle cells in vitro and in vivo. Myokines secreted by muscle cells promoted browning of 3T3-L1-derived adipocytes. In vivo activation of myokines by AAVs can reduce body weight and fat mass, increase the adipocytes browning and improve glucose tolerance and insulin sensitivity in DIO mice. CONCLUSIONS: Our study provides a novel CRISPR-based myokines activation strategy that can ameliorate obesity by promoting adipocytes browning.


Assuntos
Tecido Adiposo Marrom , Fibronectinas , Camundongos , Animais , Masculino , Fibronectinas/genética , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Camundongos Endogâmicos C57BL , Adipócitos/metabolismo , Fatores de Transcrição/metabolismo , Obesidade/genética , Obesidade/metabolismo
3.
Int J Biol Sci ; 18(14): 5539-5553, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147458

RESUMO

Overcoming energy stress is a critical step for cells in solid tumors. Under this stress microenvironment, cancer cells significantly alter their energy metabolism to maintain cell survival and even metastasis. Our previous studies have shown that thioredoxin-1 (Trx-1) expression is increased in colorectal cancer (CRC) and promotes cell proliferation. However, the exact role and mechanism of how Trx-1 is involved in energy stress are still unknown. Here, we observed that glucose deprivation of CRC cells led to cell death and promoted the migration and invasion, accompanied by upregulation of Trx-1. Increased Trx-1 supported CRC cell survival under glucose deprivation. Whereas knockdown of Trx-1 sensitized CRC cells to glucose deprivation-induced cell death and reversed glucose deprivation-induced migration, invasion, and epithelial-mesenchymal transition (EMT). Furthermore, we identified glucose-6-phosphate dehydrogenase (G6PD) interacting with Trx-1 by HuPortTM human protein chip, co-IP and co-localization. Trx-1 promoted G6PD protein expression and activity under glucose deprivation, thereby increasing nicotinamide adenine dinucleotide phosphate (NADPH) generation. Moreover, G6PD knockdown sensitized CRC cells to glucose deprivation-induced cell death and suppressed glucose deprivation-induced migration, invasion, and EMT. Inhibition of Trx-1 and G6PD, together with inhibition of glycolysis using 2-deoxy-D-glucose (2DG), resulted in significant anti-tumor effects in CRC xenografts in vivo. These findings demonstrate a novel mechanism and may represent a new effective therapeutic regimen for CRC.


Assuntos
Neoplasias Colorretais , Tiorredoxinas , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Sobrevivência Celular/genética , Neoplasias Colorretais/metabolismo , Desoxiglucose , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Glucose , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Humanos , NADP/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Microambiente Tumoral
4.
Redox Biol ; 55: 102426, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35963119

RESUMO

Ferroptosis, a new form of regulated cell death triggered by the iron-dependent peroxidation of phospholipids, is associated with cellular metabolism, redox homeostasis, and various signaling pathways related to cancer. Aspirin is a widely used non-steroidal anti-inflammatory drug (NSAID) and has been reported to show therapeutic benefit in cancers harboring oncogenic PIK3CA, which encodes the catalytic p110α subunit of phosphoinositide 3-kinase (PI3K). In this study, we found that aspirin sensitized cancer cells harboring oncogenic activation of PIK3CA to ferroptosis induction. Mechanistically, aspirin inhibited protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling, suppressed downstream sterol regulatory element-binding protein 1 (SREBP-1) expression, and attenuated stearoyl-CoA desaturase-1 (SCD1)-mediated lipogenesis of monounsaturated fatty acids, thus promoting RSL3-induced ferroptosis in colorectal cancer (CRC) cells. Moreover, genetic ablation of SREBP-1 or SCD1 conferred cancer cells greater sensitivity to ferroptosis induction. Conversely, ectopic expression of SREBP-1 or SCD1 restored ferroptosis resistance in CRC cells and abolished the effect of aspirin on RSL3-induced cytotoxicity. Additionally, the synergistic effects of aspirin and RSL3 were confirmed in a xenograft mouse model. The combined use of aspirin and RSL3 resulted in significant tumor suppression. Our work demonstrated that aspirin enhanced the cytotoxic effect of RSL3 in PIK3CA-mutant cancers, and the combination of aspirin and ferroptosis inducer displayed promising therapeutic effects in cancer treatment.

5.
J Cancer ; 13(8): 2644-2655, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711826

RESUMO

Background: Our previous study has shown that Da0324, a curcumin analog, exhibited significantly improved stability and antitumor activity. However, the molecular mechanisms of action of Da0324 remain poorly understood. Long non-coding RNA (lncRNA) has been shown to play a key role in tumor progression. Here, we aim to investigate the molecular mechanisms underlying the anti-cancer activity of Da0324 by regulating the lncRNA HOTAIRM1. Methods: Gastric cancer cell lines were treated with Da0324 and/or transfected with lentiviral vector expressing HOTAIRM1 shRNA, and/or miR-29b-1-5p mimics and/or small interference RNA (siRNA) against PHLPP1, or HOTAIRM1 siRNA or lentiviral vector expressing HOTAIRM1, as needed. The expression of HOTAIRM1, miR-29b-1-5p and PHLPP1 in GC cells was determined by Real-Time PCR. Cell growth was examined by CCK-8 assay and colony formation assay in vitro. The targeted relationship between HOTAIRM1 and miR-29b-1-5p was verified by luciferase reporter gene assay. PHLPP1 protein expression was examined by Western blotting. Results: Da0324 increased the expression of HOTAIRM1 in GC cells. HOTAIRM1 expression was significantly down-regulated in GC tissues, and the low expression of HOTAIRM1 was associated with the shorter survival rate of GC patients based on the TCGA database. Knockdown of HOTAIRM1 promoted GC cell proliferation whereas overexpression of HOTAIRM1 inhibited GC cell proliferation as demonstrated by CCK-8 and colony formation assays. Moreover, knockdown of HOTAIRM1 reversed the Da0324-mediated growth inhibition of GC cells. Furthermore, HOTAIRM1 acted as a sponge for miR-29b-1-5p and PHLPP1 is regulated by the HOTAIRM1/miR-29b-1-5p axis in GC cells. Overexpression of miR-29b-1-5p or knockdown of PHLPP1 reversed the ability of Da0324 to inhibit the growth of GC cells. Conclusions: Our data suggest that Da0324 exerts antitumor activity by regulating HOTAIRM1/miR-29b-1-5p/PHLPP1 axis in GC cells, and provide new insights into the anti-cancer mechanism of Da0324.

6.
Eur J Pharmacol ; 920: 174823, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35157912

RESUMO

Gastric cancer (GC) is a serious affliction worldwide and remains to be the fourth most common cancer with poor prognosis, especially in advanced stage. Chemotherapy is one of the main therapeutic means. The purpose of this study was to investigate the antitumor effects of Schisandrin B (Sch B) on GC cells both in vitro and in vivo, as well as the synergistic effect with 5-fluorouracil (5-FU), and to preliminarily explore the relevant mechanism of action. Our results showed that Sch B inhibited the growth, migration and invasion of GC cells. Besides, Sch B could effectively inhibit the phosphorylation of STAT3 (signal transducer and activator of transcription 3), induce autophagy, and enhance the efficacy of chemotherapy drug 5-FU in vitro and in vivo. Taken together, the findings indicate that Sch B displays potent antitumor activities. The co-administration of Sch B and 5-FU might be a promising way for future therapy of GC.


Assuntos
Neoplasias Gástricas , Apoptose , Linhagem Celular Tumoral , Ciclo-Octanos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Humanos , Lignanas , Compostos Policíclicos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA