Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 310: 116422, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36972781

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Paeonia lactiflora Pall has been used in Chinese Medicine for thousands of years, especially having anti-inflammatory, sedative, analgesic and other ethnic pharmacological effects. Moreover, Paeoniflorin is the main active ingredient of the Paeonia lactiflora Pall, and most are used in the treatment of inflammation-related autoimmune diseases. In recent years, studies have found that Paeoniflorin has a therapeutic effect on a variety of kidney diseases. AIM OF THE STUDY: Cisplatin (CIS) is limited in clinical use due to its serious side effects, such as renal toxicity, and there is no effective method for prevention. Paeoniflorin (Pae) is a natural polyphenol which has a protective effect against many kidney diseases. Therefore, our study is to explore the effect of Pae on CIS-induced AKI and the specific mechanism. MATERIALS AND METHODS: Firstly, CIS induced acute renal injury model was constructed in vivo and in vitro, and Pae was continuously injected intraperitoneally three days in advance, and then Cr, BUN and renal tissue PAS staining were detected to comprehensively evaluate the protective effect of Pae on CIS-induced AKI. We then combined Network Pharmacology with RNA-seq to investigate potential targets and signaling pathways. Finally, affinity between Pae and core targets was detected by molecular docking, CESTA and SPR, and related indicators were detected in vitro and in vivo. RESULTS: In this study, we first found that Pae significantly alleviated CIS-AKI in vivo and in vitro. Through network pharmacological analysis, molecular docking, CESTA and SPR experiments, we found that the target of Pae was Heat Shock Protein 90 Alpha Family Class A Member 1 (Hsp90AA1) which performs a crucial function in the stability of many client proteins including Akt. RNA-seq found that the KEGG enriched pathway was PI3K-Akt pathway with the most associated with the protective effect of Pae which is consistent with Network Pharmacology. GO analysis showed that the main biological processes of Pae against CIS-AKI include cellular regulation of inflammation and apoptosis. Immunoprecipitation further showed that pretreatment with Pae promoted the Hsp90AA1-Akt protein-protein Interactions (PPIs). Thereby, Pae accelerates the Hsp90AA1-Akt complex formation and leads to a significant activate in Akt, which in turn reduces apoptosis and inflammation. In addition, when Hsp90AA1 was knocked down, the protective effect of Pae did not continue. CONCLUSION: In summary, our study suggests that Pae attenuates cell apoptosis and inflammation in CIS-AKI by promoting Hsp90AA1-Akt PPIs. These data provide a scientific basis for the clinical search for drugs to prevent CIS-AKI.


Assuntos
Injúria Renal Aguda , Cisplatino , Humanos , Cisplatino/efeitos adversos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Inflamação/induzido quimicamente , Proteínas de Choque Térmico HSP90/uso terapêutico
2.
Front Pharmacol ; 13: 966645, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147345

RESUMO

Necroptosis was elevated in both tubulointerstitial and glomerular renal tissue in patients with diabetic kidney disease (DKD), and was most pronounced on glomerulus in the stage with macroalbuminuria. This study further explored whether paeoniflorin (PF) could affect podocyte necroptosis to protect kidney injure in vivo and in vitro. Our study firstly verified that there are obvious necroptosis-related changes in the glomeruli of DKD through bioinformatics analysis combined with clinicopathological data. STZ-induced mouse diabetes model and high-glucose induced podocyte injury model were used to evaluate the renoprotection, podocyte injury protection and necroptosis regulation of PF in DKD. Subsequently, the target protein-TNFR1 that PF acted on podocytes was found by computer target prediction, and then molecular docking and Surface plasmon resonance (SPR) experiments were performed to verify that PF had the ability to directly bind to TNFR1 protein. Finally, knockdown of TNFR1 on podocytes in vitro verified that PF mainly regulated the programmed necrosis of podocytes induced by high glucose through TNFR1. In conclusion, PF can directly bind and promote the degradation of TNFR1 in podocytes and then regulate the RIPK1/RIPK3 signaling pathway to affect necroptosis, thus preventing podocyte injury in DKD. Thus, TNFR1 may be used as a new potential target to treat DKD.

3.
FASEB J ; 36(9): e22501, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35971776

RESUMO

Macrophage infiltration plays an important role in the progression of diabetic nephropathy (DN). Previously, we demonstrated that highglucose-stimulated macrophage-derived exosomes (HG-exo) induces proliferation and extracellular matrix accumulation in glomerular mesangial cells, but its effect on tubular cells is unclear. This study aimed to explore the role of HG-exo on renal tubular injury in DN. The results show that HG-exo could induce dysfunction, autophagy inhibition, and inflammation in mouse tubular epithelial cell (mTEC) and C57 mouse kidney. Moreover, miR-7002-5p was differentially expressed in HG-exo based on miRNAs sequencing and bioinformatics analysis. A dual-luciferase reporter assay confirmed that Atg9b was the direct target gene of miR-7002-5p. Further experimentation showed that miR-7002-5p inhibition in vivo and vitro reserves HG-exo effects. These results demonstrated that HG-exo carries excessive miR-7002-5p and inhibits autophagy through targeting Atg9b; this process then induces renal tubular dysfunction and inflammation. In conclusion, our study clarifies the important role of macrophage-derived exosomes in DN and is expected to provide new insight on DN prevention and treatment.


Assuntos
Autofagia , Nefropatias Diabéticas , Exossomos , Proteínas de Membrana , MicroRNAs , Animais , Proteínas Relacionadas à Autofagia/genética , Nefropatias Diabéticas/genética , Células Epiteliais/citologia , Exossomos/genética , Inflamação/genética , Túbulos Renais/citologia , Macrófagos , Proteínas de Membrana/genética , Camundongos , MicroRNAs/genética
4.
Acta Pharmacol Sin ; 43(1): 96-110, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34253875

RESUMO

Diabetic kidney disease (DKD) is one of the microvascular complications of diabetes mellitus and a major cause of end-stage renal disease with limited treatment options. Wogonin is a flavonoid derived from the root of Scutellaria baicalensis Georgi, which has shown a potent renoprotective effect. But the mechanisms of action in DKD are not fully elucidated. In this study, we investigated the effects of wogonin on glomerular podocytes in DKD using mouse podocyte clone 5 (MPC5) cells and diabetic mice model. MPC5 cells were treated with high glucose (30 mM). We showed that wogonin (4, 8, 16 µM) dose-dependently alleviated high glucose (HG)-induced MPC5 cell damage, accompanied by increased expression of WT-1, nephrin, and podocin proteins, and decreased expression of TNF-α, MCP-1, IL-1ß as well as phosphorylated p65. Furthermore, wogonin treatment significantly inhibited HG-induced apoptosis in MPC5 cells. Wogonin reversed HG-suppressed autophagy in MPC5 cells, evidenced by increased ATG7, LC3-II, and Beclin-1 protein, and decreased p62 protein. We demonstrated that wogonin directly bound to Bcl-2 in MPC5 cells. In HG-treated MPC5 cells, knockdown of Bcl-2 abolished the beneficial effects of wogonin, whereas overexpression of Bcl-2 mimicked the protective effects of wogonin. Interestingly, we found that the expression of Bcl-2 was significantly decreased in biopsy renal tissue of diabetic nephropathy patients. In vivo experiments were conducted in STZ-induced diabetic mice, which were administered wogonin (10, 20, 40 mg · kg-1 · d-1, i.g.) every other day for 12 weeks. We showed that wogonin administration significantly alleviated albuminuria, histopathological lesions, and p65 NF-κB-mediated renal inflammatory response. Wogonin administration dose-dependently inhibited podocyte apoptosis and promoted podocyte autophagy in STZ-induced diabetic mice. This study for the first time demonstrates a novel action of wogonin in mitigating glomerulopathy and podocytes injury by regulating Bcl-2-mediated crosstalk between autophagy and apoptosis. Wogonin may be a potential therapeutic drug against DKD.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Flavanonas/farmacologia , Glomérulos Renais/efeitos dos fármacos , Podócitos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/administração & dosagem , Flavanonas/administração & dosagem , Injeções Intraperitoneais , Glomérulos Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Podócitos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Relação Estrutura-Atividade
5.
Int Immunopharmacol ; 101(Pt A): 108278, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34700131

RESUMO

The function of the complement and macrophage crosstalk during the formation of crescents in lupus nephritis has not yet been reported. This study therefore aimed to explore the association of crescents, complements, and M2 macrophages with clinical features in lupus nephritis. We assessed a Chinese cohort comprising 301 patients with lupus nephritis. Renal biopsy specimens were collected from 64 patients with proliferative lupus nephritis (class III/III + V or IV/IV + V). The renal deposition of cluster of differentiation (CD) 68, inducible nitric oxide synthase, CD163, and C3a receptor (C3aR) was evaluated by immunostaining. The associations among crescents, complements, and M2 macrophages were also analyzed. Next, the underlying mechanism was investigated in vitro using C3a-treated macrophages. We found that M2-phenotype macrophages (CD163+) were the dominant subpopulation in human lupus nephritis. Additionally, a significant association was observed among the CD163+ macrophages, crescents, and complement activation. C3aR co-localized with CD163 and correlated with crescents and could induce polarization of macrophages to an M2 phenotype. Overall, these results suggest that complement-mediated M2/M1 macrophage polarization may contribute to the formation of crescents in lupus nephritis.


Assuntos
Glomérulos Renais/patologia , Nefrite Lúpica/imunologia , Macrófagos/imunologia , Adulto , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Biópsia , Feminino , Humanos , Glomérulos Renais/imunologia , Nefrite Lúpica/patologia , Ativação de Macrófagos , Macrófagos/metabolismo , Masculino , Camundongos , Células RAW 264.7 , Receptores de Superfície Celular/metabolismo , Receptores de Complemento/metabolismo , Estudos Retrospectivos
6.
Drug Des Devel Ther ; 15: 3131-3150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295152

RESUMO

INTRODUCTION: Kidney tubular epithelial injury is one of the key factors in the progression of diabetic nephropathy (DN). Wogonin is a kind of flavonoid, which has many pharmacological effects, such as anti-inflammation, anti-oxidation and anti-fibrosis. However, the effect of wogonin in renal tubular epithelial cells during DN is still unknown. MATERIALS AND METHODS: STZ-induced diabetic mice were given doses of wogonin (10, 20, and 40 mg/kg) by intragastric administration for 16 weeks. The metabolic indexes from blood and urine and pathological damage of renal tubules in mice were evaluated. Human tubular epithelial cells (HK-2) were cultured in high glucose (HG) condition containing wogonin (2µM, 4µM, 8µM) for 24 h. Tubular epithelial cell inflammation and autophagic dysfunction both in vivo and in vitro were assessed by Western blot, qRT-PCR, IHC, and IF analyses. RESULTS: The treatment of wogonin attenuated urinary albumin and histopathological damage in tubulointerstitium of diabetic mice. We also found that wogonin down-regulated the expression of pro-inflammatory cytokines and autophagic dysfunction in vivo and in vitro. Molecular docking and Cellular Thermal Shift Assay (CETSA) results revealed that mechanistically phosphoinositide 3-kinase (PI3K) was the target of wogonin. We then found that inhibiting PI3K eliminated the protective effect of wogonin. Wogonin regulated autophagy and inflammation via targeting PI3K, the important connection point of PI3K/Akt/NF-κB signaling pathway. CONCLUSION: Our study is the first to demonstrate the novel role of wogonin in mitigating tubulointerstitial fibrosis and renal tubular cell injury via regulating PI3K/Akt/NF-κB signaling pathway-mediated autophagy and inflammation. Wogonin might be a latent remedial drug against tubular epithelial injury in DN by targeting PI3K.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Flavanonas/farmacologia , Inflamação/tratamento farmacológico , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/fisiopatologia , Relação Dose-Resposta a Droga , Fibrose/tratamento farmacológico , Flavanonas/administração & dosagem , Humanos , Inflamação/patologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estreptozocina
7.
Amino Acids ; 53(5): 687-700, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33811534

RESUMO

Diabetic nephropathy (DN) is one of the major complications of diabetes and contributes significantly towards end-stage renal disease. Previous studies have identified the gene encoding carnosinase (CN-1) as a predisposing factor for DN. Despite this fact, the relationship of the level of serum CN-1 and the progression of DN remains uninvestigated. Thus, the proposed study focused on clarifying the relationship among serum CN-1, indicators of renal function and tissue injury, and the progression of DN. A total of 14 patients with minimal changes disease (MCD) and 37 patients with DN were enrolled in the study. Additionally, 20 healthy volunteers were recruited as control. Further, DN patients were classified according to urinary albumin excretion rate into two groups: DN with microalbuminuria (n = 11) and DN with macroalbuminuria (n = 26). Clinical indicators including urinary protein components, serum carnosine concentration, serum CN-1 concentration and activity, and renal biopsy tissue injury indexes were included for analyzation. The serum CN-1 concentration and activity were observed to be the highest, but the serum carnosine concentration was the lowest in DN macroalbuminuria group. Moreover, within DN group, the concentration of serum CN-1 was positively correlated with uric acid (UA, r = 0.376, p = 0.026) and serum creatinine (SCr, r = 0.399, p = 0.018) and negatively correlated with serum albumin (Alb, r = - 0.348, p = 0.041) and estimated glomerular filtration rate (eGRF, r = - 0.432, p = 0.010). Furthermore, the concentration of serum CN-1 was discovered to be positively correlated with indicators including 24-h urinary protein-creatinine ratio (24 h-U-PRO/CRE, r = 0.528, p = 0.001), urinary albumin-to-creatinine ratio (Alb/CRE, r = 0.671, p = 0.000), urinary transferrin (TRF, r = 0.658, p = 0.000), retinol-binding protein (RBP, r = 0.523, p = 0.001), N-acetyl-glycosaminidase (NAG, r = 0.381, p = 0.024), immunoglobulin G (IgG, r = 0.522, p = 0.001), cystatin C (Cys-C, r = 0.539, p = 0.001), beta-2-microglobulin (ß2-MG, r = 0.437, p = 0.009), and alpha-1-macroglobulin (α1-MG, r = 0.480, p = 0.004). Besides, in DN with macroalbuminuria group, serum CN-1 also showed a positive correlation with indicators of fibrosis, oxidative stress, and renal tubular injury. Taken together, our data suggested that the level of CN-1 was increased as clinical DN progressed. Thus, the level of serum CN-1 might be an important character during the occurrence and progression of DN. Our study will contribute significantly to future studies focused on dissecting the underlying mechanism of DN.


Assuntos
Nefropatias Diabéticas/enzimologia , Dipeptidases/sangue , Adulto , Biomarcadores , Estudos de Casos e Controles , Creatinina/sangue , Cistatina C/sangue , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/fisiopatologia , Progressão da Doença , Feminino , Taxa de Filtração Glomerular , Humanos , Rim/lesões , Rim/fisiopatologia , Falência Renal Crônica/sangue , Falência Renal Crônica/enzimologia , Falência Renal Crônica/patologia , Falência Renal Crônica/fisiopatologia , Masculino , Pessoa de Meia-Idade
8.
J Ethnopharmacol ; 193: 377-386, 2016 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-27566204

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Paeoniflorin(PF), extracted from the root peeled of Paeonia lactiflora Pall(Family: Ranunculaceae), has therapeutic potential in many animal models of inflammatory diseases. AIM OF THE STUDY: Although the anti-inflammatory efficacy of PF has been well illustrated in several animal models, whether it could attenuate diabetic nephropathy and detailed mechanisms are still obscure. Till now, accumulating evidence has proposed the pivotal role of toll-like receptors (TLRs) in renal inflammation in diabetic patients. In this setting, the current study aimed to investigate the effects and underlying mechanism of PF on high glucose-induced activation of toll like-receptor 2 (TLR2) signaling in macrophages. MATERIALS AND METHODS: Bone marrow-derived macrophages (BMDM) were isolated from male Tlr2tm1kir (TLR2-/-) mice and wild-type littermates (C57BL/6JWT). The level of TLR2 and activation of downstream signaling were evaluated in response to 30mmol/L high glucose (HG)-containing medium. Macrophages behaviors, which include cell viability, migration and inflammatory cytokines production, were also determined. RESULTS: PF suppressed HG-induced production of TLR2, activation of downstream signaling and synthesis of inducible nitric oxide synthase (iNOS). PF could further inhibit MyD88-dependent pathway in HG-induced models in which TLR2 was knocked out. Moreover, deletion of TLR2 inhibited the HG-induced activation of MyD88-dependent pathway, but not TIR domain containing adapter inducing interferon-ß (Trif) signal pathway in BMDMs. As HG stimulation polarizes macrophages into M1 phenotype, treatment of PF or knockout of TLR2 significantly reduces M1 markers on the membrane of macrophages. Additionally, levels of inflammatory cytokines and iNOS were remarkably reduced in response to PF or TLR2 deficiency. CONCLUSION: Collectively, these data demonstrated that HG activated macrophages primarily through TLR2-dependent mechanisms which aggravated the severity of renal inflammation and eventually contributed to DN. Additionally, PF might be applied as a potential therapeutic agent in the battle against progressive DN.


Assuntos
Anti-Inflamatórios/farmacologia , Glucose/farmacologia , Glucosídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Monoterpenos/farmacologia , Receptor 2 Toll-Like/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo
9.
Phytomedicine ; 21(6): 815-23, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24462407

RESUMO

TLRs are a family of receptors that play a critical role in the pathogenesis of diabetic nephropathy. TGP have been shown to have anti-inflammatory and immuno-regulatory activities. However, the relation between TGP and TLRs on diabetic nephropathy remains unknown. In this study, we examined effects of TGP on immune regulatory TLR2 and 4 in the kidney from streptozotocin-induced diabetic rats. TGP decreased the levels of 24h urinary albumin excretion rate significantly in diabetic rats. Western blot analysis showed that TGP significantly inhibited the expression of TLR2 and 4, MyD88, p-IRAK1, NF-κB p65, p-IRF3, TNF-α and IL-1ß. Quantitative real-time PCR analysis showed that the significantly increased levels of TLR2 and 4, and MyD88mRNA in the kidneys of diabetic rats were significantly suppressed by TGP treatment. Macrophages infiltration were also markedly increased in the kidneys of the diabetic rats, but were significantly inhibited by TGP in a dose-dependent manner. These results suggest that TGP has protective effects on several pharmacological targets in the progress of diabetic nephropathy by selectively blocking TLRs activation in vivo.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Glucosídeos/uso terapêutico , Rim/efeitos dos fármacos , Paeonia/química , Fitoterapia , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Albuminas/metabolismo , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Glucosídeos/farmacologia , Rim/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , RNA Mensageiro/metabolismo , Ratos Wistar
10.
Am J Chin Med ; 40(3): 521-36, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22745068

RESUMO

Total glucosides of paeony (TGP) is the major active constituent of Paeonia lactiflora Pall., which has shown renoprotection in experimental diabetic nephropathy. Activation of Janus kinase/signal transducers and activators of transcription (JAK/STAT) is an important mechanism by which hyperglycemia contributes to renal damage. Macrophages also play an essential role in the pathogenesis of diabetic nephropathy. Herein, we investigated the ability of TGP to modulate JAK2/STAT3 activation and macrophage proliferation in rats with streptozotocin (STZ)-induced diabetes. TGP (50, 100, and 200 mg/kg) was administered orally once a day for eight weeks. Levels of p-JAK2 and p-STAT3 were determined by Western blot analysis. Immunohistochemistry and double immunohistochemistry were used to identify p-STAT3, ED-1, PCNA/ED-1, and p-STAT3/ED-1-positive (+) cells. The elevated 24-h urinary albumin excretion rate was markedly attenuated by treatment with 50, 100, and 200 mg/kg TGP. Western blot analysis showed that the significantly increased levels of p-JAK2, p-STAT3 proteins in the kidneys of diabetic rats were significantly inhibited by 50, 100, and 200 mg/kg TGP treatment. The marked accumulation and proliferation of macrophages in diabetic kidneys were significantly inhibited by TGP treatment. ED-1+/p-STAT3+ cells were significantly increased in the kidneys from the model group but were significantly inhibited by TGP treatment. These results show that TGP significantly inhibited diabetic nephropathy progression and suggest that these protective effects are associated with the ability of TGP to inhibit the JAK2/STAT3 pathway and macrophage proliferation and action.


Assuntos
Nefropatias Diabéticas/prevenção & controle , Glucosídeos/farmacologia , Janus Quinase 2/metabolismo , Rim/efeitos dos fármacos , Paeonia/química , Fitoterapia , Fator de Transcrição STAT3/metabolismo , Albuminúria/prevenção & controle , Animais , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/urina , Glucosídeos/uso terapêutico , Rim/citologia , Rim/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
11.
Int Immunopharmacol ; 11(10): 1613-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21640200

RESUMO

Calcineurin (CaN) plays an important role in glomerular hypertrophy and extracellular matrix accumulation in early diabetic nephropathy. Cyclosporine (CSA), a CaN inhibitor, has been shown to reduce renal injury in streptozotocin-induced diabetic rats. We examined whether FK506, which immunosuppressive action was 10-100 times of CSA, inhibits progression of diabetic nephropathy in experimental diabetic rats. Diabetes was induced with streptozotocin in rats, and FK506 (0.5 or 1.0mg/kg) was orally administered once a day for 4 weeks. Increased relative kidney weight was significantly reduced by FK506 treatment with 1.0mg/kg (p<0.05), and elevated 24 hour urinary albumin excretion rate was markedly attenuated by FK506 treatment with 0.5 and 1.0mg/kg (p<0.05, 0.01). Elevated glomerular volume was significantly attenuated by FK506 treatment with 0.5 and 1.0mg/kg (p<0.05), and increased indices for tubulointerstitial injury were only ameliorated by FK506 treatment with 1.0mg/kg (p<0.01). Western blot analysis noted that the expression of CaN protein was increased 2.4 fold in the kidney from diabetic rats, and FK506 treatment with 0.5 and 1.0mg/kg could reduce increased expression of CaN protein by 38.0% and 73.2%. The expression of 1α (IV) collagen, p65, p-p65, OPN, α-SMA and TGF-ß1 protein in kidney was significantly increased in diabetic rats and reduced by FK506 treatment (p<0.05, 0.01). Our results show that FK506 could ameliorate renal injury in early experimental diabetic rats, which mechanism may be at least partly correlated with suppression on increased CaN in renal tissue in diabetic rats.


Assuntos
Calcineurina/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Imunossupressores/administração & dosagem , Rim/efeitos dos fármacos , Tacrolimo/administração & dosagem , Actinas/genética , Actinas/metabolismo , Administração Oral , Animais , Calcineurina/genética , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Nefropatias Diabéticas/prevenção & controle , Progressão da Doença , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Ratos , Ratos Endogâmicos , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
12.
Am J Chin Med ; 37(2): 295-307, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19507273

RESUMO

Total glucosides of paeony (TGP), extracted from the traditional Chinese herb root of Paeonia lactiflora pall, have been shown to have a therapeutic role in experimental diabetic nephropathy including albuminuria. Recent investigation has identified nephrin, a podocyte-specific transmembrane protein, as a key regulator in the pathogenesis of diabetic albuminuria. The aim of this study was to investigate whether TGP can attenuate albuminuria through prevention of nephrin loss in the experimental diabetic nephropathy. Fifty male Munich-Wistar rats were obtained from the Experimental Animal Center of Anhui Medical University. These rats were divided into 5 groups (n = 10); normal group, control diabetic group, and 3 TGP treated diabetic groups at different concentrations. Diabetes was induced by streptozotocin, and TGP (50, 100, 200 mg/kg) was orally administered to the 3 TGP treated diabetic groups once a day for 8 weeks, respectively. Blood glucose and 24 hour urinary albumin excretion rate (AER) were measured. The expressions of nephrin, tumor necrosis factor-alpha (TNF-alpha), NF-kappaB p65 and 3-nitrotyrosine (3-NT) protein were determined by immunoinfluorescence or Western blot analysis in the kidneys. Elevated AER was markedly attenuated by TGP treatment in diabetic rats. There was a finely dotted linear epithelial staining of nephrin in normal group glomeruli. In contrast, the staining of glomeruli from untreated diabetic rats was attenuated, more diapersed, and clustered. This diabetic-induced loss of glomerular nephrin expression was prevented in a large degree in TGP-treated diabetic rats. Western blot analysis showed that the expression of nephrin protein was reduced in the kidneys of diabetic rats, but significantly increased in the TGP treatment groups. The expressions of TNF-alpha, NF-kappaB p65 and 3-NT protein were significantly increased in the kidneys of diabetic rats, which were all significantly inhibited by TGP treatment. Our results showed that TGP could decrease AER in diabetic rat, and that its mechanism may be at least partly correlated with upregulation of the expression of nephrin in the kidney.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Glucosídeos/farmacologia , Rim/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Paeonia/química , Animais , Western Blotting , Imunofluorescência , Rim/metabolismo , Masculino , Ratos , Ratos Wistar
13.
Nephron Exp Nephrol ; 104(4): e147-57, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16902319

RESUMO

BACKGROUND/AIMS: Experimental and clinical evidence has consistently demonstrated that renal macrophage infiltration is one of the most important events for the progression of diabetic nephropathy. Breviscapine is a flavonoid extracted from the Chinese herb Erigeron breviscapus. Previously, it was shown that treatment with breviscapine attenuated renal injury in the diabetic rats. The purpose of this study is to investigate whether the renoprotective effect of breviscapine is through suppression of renal macrophage recruitment in diabetic rats. METHODS: Diabetes was induced bystreptozotocin injection, and breviscapine was administered orally at a dose of 20 mg/kg/day for 8 weeks. Control rats received vehicle or breviscapine with the same schedule. RESULTS: Breviscapine treatment markedly inhibited both an increase of albuminuria and glomeruli hypertrophy and tubulointerstitial injury without modifying mean arterial blood pressure and creatinine clearance. Levels of malondialdehyde and protein kinase C activities were markedly higher and antioxidant enzyme activities such as superoxide dismutase, catalase as well as glutathione peroxidase were significantly lower in the kidneys of diabetic rats than of the control group, breviscapine administration markedly remitted these changes. ED-1-positive cells and expression of intercellular adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein-1 (MCP-1) in glomeruli and tubulointerstitium were all markedly elevated but were significantly reduced by breviscapine. Western blot analysis noted that the expression of transforming growth factor beta1 protein was increased 1.8-fold in the kidney in diabetic rats, breviscapine treatment could reduce increased expression of TGF-beta1 protein by 47%. CONCLUSION: This study describes a novel mechanism by which breviscapine confers a renoprotective effect.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Flavonoides/farmacologia , Macrófagos/efeitos dos fármacos , Animais , Quimiocina CCL2/análise , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Molécula 1 de Adesão Intercelular/análise , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos
14.
Int Immunopharmacol ; 6(3): 445-53, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16428080

RESUMO

Previously it was shown that treatment with mycophenolate mofetil (MMF) attenuated renal inflammation and glomerular injury in a model of diabetes. However, the mechanism involved in the renoprotective effects of MMF in experimental diabetes has not been clearly delineated. Diabetes was induced by injection of streptozotocin (STZ) after uninephrectomy. Diabetic animals received no treatment or treatment with MMF (10 mg/kg once daily by gastric gavage) for 8 weeks, non-diabetic rats served as controls. Level of malondialdehyde (MDA) in renal tissue and urine as well as the activity of antioxidant enzymes (AOE) in renal tissue was determined. Renal injury was evaluated. Immunohistochemistry for ED-1 macrophages marker, intercellular adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein-1 (MCP-1) was performed. Expression of transforming growth factor (TGF)-beta1 protein was determined by Western blotting analysis. Treatment with MMF had no effect on blood glucose level, but did prevent increased urinary albumin excretion and glomerular damage in diabetic rats. Oxidative stress was reduced by MMF treatment, as indicated by a reduction in MDA level in renal tissue and urine. Activity of AOE such as glutathione peroxidase (GSH-PX) was markedly elevated while superoxide dismutase (SOD) and catalase (CAT) were not changed by MMF treatment. In diabetic animals receiving no treatment, there were increases in ED-1-positive cells, ICAM-1 expression and MCP-1 expression in glomeruli and tubulointerstitium, which were effectively suppressed by MMF treatment. Western blotting analysis showed that the expression of TGF-beta1 protein was increased by 1.92-fold in renal tissue in diabetic rats, and MMF treatment significantly reduced the increased expression of TGF-beta1 protein by 45%. Our data suggest that MMF treatment ameliorates early renal injury via the inhibition of oxidative stress and overexpression of ICAM-1, MCP-1 and TGF-beta1 in renal tissue in diabetic rats.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Rim/efeitos dos fármacos , Ácido Micofenólico/análogos & derivados , Animais , Quimiocina CCL2/biossíntese , Quimiocina CCL2/genética , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Molécula 1 de Adesão Intercelular/biossíntese , Molécula 1 de Adesão Intercelular/genética , Rim/citologia , Rim/metabolismo , Rim/patologia , Macrófagos/citologia , Macrófagos/patologia , Masculino , Ácido Micofenólico/farmacologia , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar , Fator de Crescimento Transformador beta1/biossíntese , Fator de Crescimento Transformador beta1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA