Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Vet Microbiol ; 293: 110094, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636175

RESUMO

Infectious bursa disease (IBD) is an acute, highly contactable, lethal, immunosuppressive infectious disease caused by the Infectious bursa disease virus (IBDV). Currently, the emerged novel variant IBDV (nVarIBDV) and the sustainedly prevalent very virulent IBDV (vvIBDV) are the two most prevalent strains of IBDV in China. The antigenic properties of the two prevalent strains differed significantly, which led to the escape of nVarIBDV from the immune protection provided by the existing vvIBDV vaccine. However, the molecular basis of the nVarIBDV immune escape remains unclear. In this study, we demonstrated, for the first time, that residues 252, 254, and 256 in the PDE of VP2 are involved in the immune escape of the emerging nVarIBDV. Firstly, the IFA-mediated antigen-antibody affinity assay showed that PBC and PDE of VP2 could affect the affinity of vvIBDV antiserum to VP2, of which PDE was more significant. The key amino acids of PDE influencing the antigen-antibody affinity were also identified, with G254N being the most significant, followed by V252I and I256V. Then the mutated virus with point or combined mutations was rescued by reverse genetics. it was further demonstrated that mutations of V252I, G254N, and I256V in PDE could individually or collaboratively reduce antigen-antibody affinity and interfere with antiserum neutralization, with G254N being the most significant. This study revealed the reasons for the widespread prevalence of nVarIBDV in immunized chicken flocks and provided innovative ideas for designing novel vaccines that match the antigen of the epidemic strain.


Assuntos
Infecções por Birnaviridae , Proteínas do Capsídeo , Galinhas , Evasão da Resposta Imune , Vírus da Doença Infecciosa da Bursa , Doenças das Aves Domésticas , Vírus da Doença Infecciosa da Bursa/genética , Vírus da Doença Infecciosa da Bursa/imunologia , Animais , Galinhas/virologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Infecções por Birnaviridae/veterinária , Infecções por Birnaviridae/virologia , Infecções por Birnaviridae/imunologia , China , Anticorpos Antivirais/imunologia , Mutação , Vacinas Virais/imunologia , Proteínas Estruturais Virais
2.
J Virol ; 98(5): e0018124, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38639485

RESUMO

Infectious bursal disease (IBD) is an acute and fatal immunosuppressive disease caused by infectious bursal disease virus (IBDV). As an obligate intracellular parasite, IBDV infection is strictly regulated by host factors. Knowledge on the antiviral activity and possible mechanism of host factors might provide the theoretical basis for the prevention and control of IBD. In this study, RNA-sequencing results indicated that many host factors were induced by IBDV infection, among which the expression levels of OASL (2´,5´-oligadenylate synthetase-like protein) was significantly upregulated. OASL overexpression significantly inhibited IBDV replication, whereas OASL knockdown promoted IBDV replication. Interestingly, the antiviral ability of OASL was independent of its canonical enzymatic activity, i.e., OASL targeted viral protein VP2 for degradation, depending on the autophagy receptor p62/SQSTM1 in the autophagy pathway. Additionally, the 316 lysine (K) of VP2 was the key site for autophagy degradation, and its replacement with arginine disrupted VP2 degradation induced by OASL and enhanced IBDV replication. Importantly, our results for the first time indicate a unique and potent defense mechanism of OASL against double-stranded RNA virus by interaction with viral proteins, which leads to their degradation. IMPORTANCE: OASL (2´,5´-oligadenylate synthetase-like protein) exhibits broad-spectrum antiviral effects against single-stranded RNA viruses in mammals, potentially serving as a promising target for novel antiviral strategies. However, its role in inhibiting the replication of double-stranded RNA viruses (dsRNA viruses), such as infectious bursal disease virus (IBDV), in avian species remains unclear. Our findings indicated a unique and potent defense mechanism of OASL against dsRNA viruses. It has been previously shown in mammals that OASL inhibits virus replication through increasing interferon production. The groundbreaking aspect of our study is the finding that OASL has the ability to interact with IBDV viral protein VP2 and target it for degradation and thus exerts its antiviral effect. Our results reveal the interaction between avian natural antiviral immune response and IBDV infection. Our study not only enhances our understanding of bird defenses against viral infections but can also inform strategies for poultry disease management.


Assuntos
2',5'-Oligoadenilato Sintetase , Autofagia , Infecções por Birnaviridae , Galinhas , Vírus da Doença Infecciosa da Bursa , Proteínas Estruturais Virais , Replicação Viral , Vírus da Doença Infecciosa da Bursa/fisiologia , Animais , Infecções por Birnaviridae/virologia , Infecções por Birnaviridae/metabolismo , Proteínas Estruturais Virais/metabolismo , Proteínas Estruturais Virais/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , 2',5'-Oligoadenilato Sintetase/genética , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/metabolismo , Interações Hospedeiro-Patógeno , Células HEK293 , Humanos , Linhagem Celular
3.
PLoS Pathog ; 20(2): e1011928, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324558

RESUMO

The subgroup J avian leukosis virus (ALV-J), a retrovirus, uses its gp85 protein to bind to the receptor, the chicken sodium hydrogen exchanger isoform 1 (chNHE1), facilitating viral invasion. ALV-J is the main epidemic subgroup and shows noteworthy mutations within the receptor-binding domain (RBD) region of gp85, especially in ALV-J layer strains in China. However, the implications of these mutations on viral replication and transmission remain elusive. In this study, the ALV-J layer strain JL08CH3-1 exhibited a more robust replication ability than the prototype strain HPRS103, which is related to variations in the gp85 protein. Notably, the gp85 of JL08CH3-1 demonstrated a heightened binding capacity to chNHE1 compared to HPRS103-gp85 binding. Furthermore, we showed that the specific N123I mutation within gp85 contributed to the enhanced binding capacity of the gp85 protein to chNHE1. Structural analysis indicated that the N123I mutation primarily enhanced the stability of gp85, expanded the interaction interface, and increased the number of hydrogen bonds at the interaction interface to increase the binding capacity between gp85 and chNHE1. We found that the N123I mutation not only improved the viral replication ability of ALV-J but also promoted viral shedding in vivo. These comprehensive data underscore the notion that the N123I mutation increases receptor binding and intensifies viral replication.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Doenças das Aves Domésticas , Animais , Vírus da Leucose Aviária/genética , Vírus da Leucose Aviária/química , Mutação , Galinhas , Isoformas de Proteínas/genética , Proteínas do Envelope Viral/genética
4.
J Mater Chem B ; 12(6): 1467-1489, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38288550

RESUMO

Cancer remains one of the deadliest diseases, and is characterised by the uncontrolled growth of modified human cells. Unlike infectious diseases, cancer does not originate from foreign agents. Though a variety of diagnostic procedures are available; their cost-effectiveness and accessibility create significant hurdles. Non-specific cancer symptoms further complicate early detection, leading to belated recognition of certain cancer. The lack of reliable biomarkers hampers effective treatment, as chemotherapy, radiation therapy, and surgery often result in poor outcomes and high recurrence rates. Genetic and epigenetic mutations play a crucial role in cancer pathogenesis, necessitating the development of alternate treatment methods. The advent of CRISPR/Cas9 technology has transformed molecular biology and exhibits potential for gene modification and therapy in various cancer types. Nonetheless, obstacles such as safe transport, off-target consequences, and potency must be overcome before widespread clinical use. Notably, this review delves into the multifaceted landscape of cancer research, highlighting the pivotal role of nanoparticles in advancing CRISPR/Cas9-based cancer interventions. By addressing the challenges associated with cancer diagnosis and treatment, this integrated approach paves the way for innovative solutions and improved patient outcomes.


Assuntos
Nanopartículas , Neoplasias , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas , Terapia Genética/métodos , Neoplasias/genética
5.
Saudi Pharm J ; 31(4): 554-568, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37063438

RESUMO

Ferroptosis is a new type of cell death discovered in recent years that distinguishes from apoptosis and necrosis, mainly caused by the imbalance between the production and degradation of lipid reactive oxygen species in cells. Although the mechanism of ferroptosis is not yet clear, the phenomenon of ferroptosis has attracted widespread attention from researchers and has become a new hotspot in anti-tumor research. Studies have shown that ferroptosis is involved in the occurrence and development of a variety of diseases such as nervous system diseases, cardiovascular diseases and cancer. And inhibiting or inducing the occurrence of ferroptosis can effectively intervene in related diseases. At the same time, nanotechnology, by virtue of its distinct advantages, has been widely used in the development of nanodrug delivery systems. This review outlines current the advance on the intersection of ferroptosis and biomedical nanotechnology. In this review, the discovery and characteristics of ferroptosis, the mechanism of occurrence and the relationship with disease are summarized. More importantly, we summarized the strategies for inducing ferroptosis based on nanoparticulate drug delivery systems for cancer treatment.

6.
Viruses ; 15(4)2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37112925

RESUMO

Despite highly effective vaccines, Marek's disease (MD) causes great economic loss to the poultry industry annually, largely due to the continuous emergence of new MD virus (MDV) strains. To explore the pathogenic characteristics of newly emerged MDV strains, we selected two strains (AH/1807 and DH/18) with clinically different pathotypes. We studied each strain's infection process and pathogenicity and observed differences in immunosuppression and vaccine resistance. Specific pathogen-free chickens, unvaccinated or vaccinated with CVI988, were challenged with AH/1807 or DH/18. Both infections induced MD damage; however, differences were observed in terms of mortality (AH/1807: 77.8%, DH/18: 50%) and tumor rates (AH/1807: 50%, DH/18: 33.3%). The immune protection indices of the vaccine also differed (AH/1807: 94.1, DH/18: 61.1). Additionally, while both strains caused interferon-ß and interferon-γ expression to decline, DH/18 infection caused stronger immunosuppression than AH/1807. This inhibition persisted even after vaccination, leading to increased replication of DH/18 that ultimately broke through vaccine immune protection. These results indicate that both strains have different characteristics, and that strains such as DH/18, which cause weaker pathogenic damage but can break through vaccine immune protection, require further attention. Our findings increase the understanding of the differences between epidemic strains and factors underlying MD vaccination failure in China.


Assuntos
Herpesvirus Galináceo 2 , Vacinas contra Doença de Marek , Doença de Marek , Doenças das Aves Domésticas , Vacinas , Animais , Doença de Marek/epidemiologia , Doença de Marek/prevenção & controle , Galinhas , Virulência , China/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/prevenção & controle
7.
Int J Nanomedicine ; 18: 1521-1536, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998602

RESUMO

Background: Synergistic chemotherapy has been proved as an effective antitumor means in clinical practice. However, most co-administration treatment often lacks simultaneous control over the release of different chemotherapeutic agents. Materials and Methods: ß-cyclodextrin modified hyaluronic acid was the "shell", and the oxidized ferrocene-stearyl alcohol micelles served as the "core", where doxorubicin (DOX) and curcumin (CUR) were loaded in shell and core of the bilayer nanoparticles (BNs), respectively. The pH- and glutathione (GSH)-responsive synchronized release behavior was evaluated in different mediums, and the in vitro and in vivo synergistic antitumor effect and CD44-mediated tumor targeting efficiency were further investigated. Results: These BNs had a spherical structure with the particle size of 299 ± 15.17 nm, while the synchronized release behaviour of those two drugs was proved in the medium with the pH value of 5.5 and 20 mM GSH. The co-delivery of DOX and CUR reduced the IC50 value by 21% compared to DOX alone, with a further 54% reduction after these BNs delivery measurements. In tumor-bearing mouse models, these drug-loaded BNs showed significant tumor targeting, enhanced antitumor activity and reduced systemic toxicity. Conclusion: The designed bilayer nanoparticle could be considered as potential chemotherapeutic co-delivery platform for efficient synchronized microenvironment respond and drug release. Furthermore, the simultaneous and synergistic drug release guaranteed the enhanced antitumor effects during the co-administration treatment.


Assuntos
Curcumina , Nanopartículas , Neoplasias , Camundongos , Animais , Sistemas de Liberação de Medicamentos , Doxorrubicina/farmacologia , Curcumina/farmacologia , Portadores de Fármacos , Concentração de Íons de Hidrogênio , Liberação Controlada de Fármacos , Microambiente Tumoral
8.
J Biol Chem ; 299(3): 102962, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36717079

RESUMO

Subgroup K avian leukosis virus (ALV-K) is a novel subgroup of ALV isolated from Chinese native chickens. As for a retrovirus, the interaction between its envelope protein and cellular receptor is a crucial step in ALV-K infection. Tva, a protein previously determined to be associated with vitamin B12/cobalamin uptake, has been identified as the receptor of ALV-K. However, the molecular mechanism underlying the interaction between Tva and the envelope protein of ALV-K remains unclear. In this study, we identified the C-terminal loop of the LDL-A module of Tva as the minimal functional domain that directly interacts with gp85, the surface component of the ALV-K envelope protein. Further point-mutation analysis revealed that E53, L55, H59, and G70, which are exposed on the surface of Tva and are spatially adjacent, are key residues for the binding of Tva and gp85 and facilitate the entry of ALV-K. Homology modeling analysis indicated that the substitution of these four residues did not significantly impact the Tva structure but impaired the interaction between Tva and gp85 of ALV-K. Importantly, the gene-edited DF-1 cell line with precisely substituted E53, L55, H59, and G70 was completely resistant to ALV-K infection and did not affect vitamin B12/cobalamin uptake. Collectively, these findings not only contribute to a better understanding of the mechanism of ALV-K entry into host cells but also provide an ideal gene-editing target for antiviral study.


Assuntos
Vírus da Leucose Aviária , Doenças das Aves Domésticas , Receptores Virais , Vitamina B 12 , Animais , Vírus da Leucose Aviária/genética , Galinhas/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Virais/metabolismo , Proteínas do Envelope Viral/metabolismo , Complexo Vitamínico B , Vitamina B 12/metabolismo
9.
J Virol ; 97(1): e0178522, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36511697

RESUMO

Type I interferon (IFN) response is the first line of host-based innate immune defense against viral infections. However, viruses have developed multiple strategies to counter host IFN responses, so they may continue infecting hosts via effective replication. Avian reovirus (ARV), an RNA virus, causes viral arthritis or tenosynovitis in chickens. Previous studies have shown that ARV is highly resistant to the antiviral effects of IFN. However, the underlying mechanisms that enable ARV to block the IFN pathway remain unclear. In this study, we found that ectopic expression of ARV protein, σA, significantly inhibited the production of IFN-ß induced by melanoma-differentiation-associated gene 5 (MDA5) and poly(I·C). Knockdown of σA during ARV infection enhances the IFN-ß response and suppresses viral replication. ARV σA inhibited the MDA5-mediated IFN-ß activation by targeting interferon regulatory factor 7 (IRF7). Further studies demonstrated that σA interacts with IRF7, thereby blocking IRF7 dimerization and nuclear translocation, finally leading to the inhibition of IFN-ß production. These findings reveal a novel mechanism that allows ARV to evade host antiviral immunity. IMPORTANCE ARV, the causative agent of viral arthritis or tenosynovitis in chickens, has a significant economic impact as it results in poor weight gain and increased feed conversion ratios. The MDA5-mediated IFN-ß signal pathway plays an important role in host antiviral defense. Therefore, RNA viruses have developed mechanisms to counter this signaling pathway and successfully establish infection. However, the strategies adopted by ARV to block MDA5-IRF7 signaling remain unclear. In the current study, we demonstrated that ARV σA inhibits this pathway by binding to IRF7, which blocked IRF7 dimerization and nuclear translocation. Our findings may provide insights into how avian reovirus counteracts the innate antiviral immunity of the host to ensure viral replication.


Assuntos
Fator Regulador 7 de Interferon , Interferon Tipo I , Orthoreovirus Aviário , Tenossinovite , Proteínas do Core Viral , Animais , Linhagem Celular , Galinhas/virologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Orthoreovirus Aviário/fisiologia , Tenossinovite/veterinária , Tenossinovite/virologia , Proteínas do Core Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo
10.
Sci Bull (Beijing) ; 67(6): 646-654, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36546126

RESUMO

Infectious bursal disease virus (IBDV) causes a highly contagious immunosuppressive disease in chickens, resulting in significant economic losses. The very virulent IBDV strain (vvIBDV) causes high mortality and cannot adapt to cell culture. In contrast, attenuated strains of IBDV are nonpathogenic to chickens and can replicate in cell culture. Although the crystal structure of T = 1 subviral particles (SVP) has been reported, the structures of intact IBDV virions with different virulences remain elusive. Here, we determined the cryo-electron microscopy (cryo-EM) structures of the vvIBDV Gx strain and its attenuated IBDV strain Gt at resolutions of 3.3 Å and 3.2 Å, respectively. Compared with the structure of T = 1 SVP, IBDV contains several conserved structural elements unique to the T = 13 virion. Notably, the N-terminus of VP2, which is disordered in the SVP, interacts with the SF strand of VP2 from its neighboring trimer, completing the ß-sheet of the S domain. This interaction helps to form a contact network by tethering the adjacent VP2 trimers and contributes to the assembly and stability of the IBDV virion. Structural comparison of the Gx and Gt strains indicates that H253 and T284 in the VP2 P domain of Gt, in contrast to Gx, form a hydrogen bond with a positively charged surface. This suggests that the combined mutations Q253H/A284T and the associated structural electrostatic features of the attenuated Gt strain may contribute to adaptation to cell culture. Furthermore, a negatively charged groove in VP2, containing an integrin binding IDA motif that is critical for virus attachment, was speculated to play a functional role in the entry of IBDV.


Assuntos
Galinhas , Vírus da Doença Infecciosa da Bursa , Animais , Galinhas/metabolismo , Vírus da Doença Infecciosa da Bursa/química , Microscopia Crioeletrônica , Proteínas Estruturais Virais/genética , Virulência
11.
J Virol ; 96(18): e0067822, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36069550

RESUMO

The receptor of the subgroup A avian leukosis virus (ALV-A) in chicken is Tva, which is the homologous protein of human CD320 (huCD320), contains a low-density lipoprotein (LDL-A) module and is involved in the uptake of transcobalamin bound vitamin B12/cobalamin (Cbl). To map the functional determinants of Tva responsible for ALV-A receptor activity, a series of chimeric receptors were created by swapping the LDL-A module fragments between huCD320 and Tva. These chimeric receptors were then used for virus entry and binding assays to map the minimal ALV-A functional domain of Tva. The results showed that Tva residues 49 to 71 constituted the minimal functional domain that directly interacted with the ALV-A gp85 protein to mediate ALV-A entry. Single-residue substitution analysis revealed that L55 and W69, which were spatially adjacent on the surface of the Tva structure, were key residues that mediate ALV-A entry. Structural alignment results indicated that L55 and W69 substitutions did not affect the Tva protein structure but abolished the interaction force between Tva and gp85. Furthermore, substituting the corresponding residues of huCD320 with L55 and W69 of Tva converted huCD320 into a functional receptor of ALV-A. Importantly, soluble huCD320 harboring Tva L55 and W69 blocked ALV-A entry. Finally, we constructed a Tva gene-edited cell line with L55R and W69L substitutions that could fully resist ALV-A entry, while Cbl uptake was not affected. Collectively, our findings suggested that amino acids L55 and W69 of Tva were key for mediating virus entry. IMPORTANCE Retroviruses bind to cellular receptors through their envelope proteins, which is a crucial step in infection. While most retroviruses require two receptors for entry, ALV-A requires only one. Various Tva alleles conferring resistance to ALV-A, including Tvar1 (C40W substitution), Tvar2 (frame-shifting four-nucleotide insertion), Tvar3, Tvar4, Tvar5, and Tvar6 (deletion in the first intron), are known. However, the detailed entry mechanism of ALV-A in chickens remains to be explored. We demonstrated that Tva residues L55 and W69 were key for ALV-A entry and were important for correct interaction with ALV-A gp85. Soluble Tva and huCD320 harboring the Tva residues L55 and W69 effectively blocked ALV-A infection. Additionally, we constructed gene-edited cell lines targeting these two amino acids, which completely restricted ALV-A entry without affecting Cbl uptake. These findings contribute to a better understanding of the infection mechanism of ALV-A and provided novel insights into the prevention and control of ALV-A.


Assuntos
Aminoácidos , Vírus da Leucose Aviária , Aminoácidos/metabolismo , Animais , Leucose Aviária/virologia , Vírus da Leucose Aviária/metabolismo , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Galinhas/metabolismo , Humanos , Lipoproteínas LDL/metabolismo , Nucleotídeos/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo , Transcobalaminas/metabolismo , Vitamina B 12/metabolismo
12.
Viruses ; 14(8)2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-36016448

RESUMO

Inclusion body hepatitis (IBH), hydropericardium syndrome, and gizzard erosion associated with fowl adenovirus (FAdV) infection have caused notable economic losses worldwide. In 2020, severe IBH was observed in a layer chicken farm in Hebei Province, China. Liver samples were collected from layer chickens with severe IBH and virus isolation was performed in LMH cells. DNA sequence and bioinformatics analyses were conducted to determine the phylogenetic relationship and the pathogenicity assay was conducted in specific-pathogen-free (SPF) chickens. HeB20 strain was isolated and identified as FAdV-8b, and the complete genome was successfully sequenced (GenBank No. OK188966). Although widespread recombination in clinical strains has been reported within FAdVs, HeB20 showed some novel characteristics, and did not show any recombination, highlighting that recombinant and non-recombinant FAdV-8b coexist in the clinic poultry industry. Finally, pathogenicity animal model of HeB20 was developed and showed severe IBH and 10% mortality. Collectively, a new FAdV-8b strain (HeB20) was isolated and responsible for the severe IBH in layer chickens. Complete genome of HeB20 was sequenced and valuable for future epidemiological investigations. HeB20 was capable of inducing severe IBH and 10% mortality in SPF chickens; this animal model provides a powerful tool for the future vaccine development.


Assuntos
Infecções por Adenoviridae , Aviadenovirus , Doenças das Aves Domésticas , Animais , Aviadenovirus/genética , Galinhas , Modelos Animais , Filogenia
13.
Transbound Emerg Dis ; 69(5): e1702-e1709, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35266322

RESUMO

Marek's disease virus (MDV), an oncogenic virus belonging to the subfamily Alphaherpesvirinae, causes Marek's disease (MD). Vaccines can control MD but cannot block the viral infection; they are considered imperfect vaccines, which carry the risk of recombination. In this study, six natural recombinant MDV strains were isolated from infected chickens in commercial flocks in China. We sequenced and analysed the genetic characteristics of the isolates (HC/0803, CH/10, SY/1219, DH/1307, DH/1504 and Hrb/1504). We found that the six strains resulted from recombination between the vaccine CVI988/Rispens (CVI988) strain skeleton and the virulence strain's partial unique short region. Additionally, a pathogenicity study was performed on recombinant strains (HC/0803 and DH/1307) and reference strains (CVI988 and LHC2) to evaluate their virulence. LHC2 induced 84.6% mortality in infected chickens; however, no mortality was recorded in chickens inoculated with HC/0803, DH/1307 or CVI988. However, HC/0803 and DH/1307 induced a notable spleen enlargement, and mild thymus and bursa atrophy at 11-17 days post-challenge (dpc). The viral genome load in the HC/0803- and DH/1307-challenged chickens peaked at approximately 107 viral copies per million host cells at 17 dpc and was similar to that in LHC2-challenged chickens, but significantly higher than that of CVI988-challenged chickens. In summary, HC/0803 and DH/1307 displayed mild virulence with temporal damage to the immune organs of chicken and a higher reproduction capability than the vaccine strain CVI988. Our study provides direct evidence of the emergence of recombinant MDV strains between vaccine and virulence strains in nature. The emergence of natural recombinant strains suggests that live vaccines can act as genetic donors for genomic recombination, and recombination may be a safety concern when administering live vaccines. These findings demonstrate that recombination promotes genetic diversity and increases the complexity of disease diagnosis, prevention and control.


Assuntos
Herpesvirus Galináceo 2 , Vacinas contra Doença de Marek , Doença de Marek , Doenças das Aves Domésticas , Animais , Galinhas , Herpesvirus Galináceo 2/genética , Doença de Marek/prevenção & controle , Vacinas contra Doença de Marek/genética , Virulência
14.
Vet Microbiol ; 266: 109375, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35217324

RESUMO

The emerging hepatitis-hydropericardium syndrome (HHS) caused by the novel genotype of fowl adenovirus 4 (FAdV-4) and the infectious bursal disease (IBD) caused by the infectious bursal disease virus (IBDV) are important avian diseases, both cause huge economic losses to the poultry industry. Therefore, it is necessary to develop an efficient and convenient FAdV-4/IBDV bivalent vaccine to prevent the spread of FAdV-4 and IBDV infections. Given that VP2 is the main structural protein and protective antigen of IBDV, we constructed a recombinant FAdV-4 expressing IBDV VP2 in our previous study. In the current study, an inactivated bivalent FAdV-4/IBDV vaccine was developed from the recombinant strain. The inactivated bivalent vaccine elicited effective and specific neutralizing antibodies against both FAdV-4 and IBDV in specific-pathogen-free chickens. Furthermore, the novel vaccine not only protected chickens from death caused by FAdV-4 and the very virulent IBDV (vvIBDV) infection, but also ameliorated target organ damage and reduced viral load. The FAdV-4-vectored vaccine developed in this study provides new options for the development of avian polyvalent inactivated vaccines and is a powerful tool for the prevention of both emerging HHS and IBD.


Assuntos
Infecções por Birnaviridae , Hepatite , Vírus da Doença Infecciosa da Bursa , Doenças das Aves Domésticas , Vacinas Virais , Animais , Anticorpos Antivirais , Infecções por Birnaviridae/prevenção & controle , Infecções por Birnaviridae/veterinária , Galinhas , Vacinas Combinadas
15.
Nanomedicine (Lond) ; 17(5): 303-324, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35060391

RESUMO

Recent studies found that unbalanced copper homeostasis affect tumor growth, causing irreversible damage. Copper can induce multiple forms of cell death, including apoptosis and autophagy, through various mechanisms, including reactive oxygen species accumulation, proteasome inhibition, and antiangiogenesis. Hence, copper in vivo has attracted tremendous attention and is in the research spotlight in the field of tumor treatment. This review first highlights three typical forms of copper's antitumor mechanisms. Then, the development of diverse biomaterials and nanotechnology allowing copper to be fabricated into diverse structures to realize its theragnostic action is discussed. Novel copper complexes and their clinical applications are subsequently described.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Autofagia , Linhagem Celular Tumoral , Cobre/química , Humanos , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo
16.
Vet Microbiol ; 264: 109285, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34808432

RESUMO

Hepatitis-hydropericardium syndrome (HHS) in birds is mainly caused by virulent fowl adenovirus 4 (FAdV-4). A novel genotype, hypervirulent FAdV-4, emerged in 2015 with a high mortality rate ranging from 30 % to 100 % in chickens. Vaccination is an economically feasible method to control HHS. Although there have been various reports of inactivated vaccines from virulent wild-type FAdV-4 against HHS, biosafety threats of inactivated vaccines from potential pathogenic components have been presented to the poultry industry, and safer vaccines are urgently needed. A non-pathogenic recombinant FAdV-4 strain, designated as rHN20, was generated based on the hypervirulent strain in our previous study. Here, we developed a novel inactivated oil-adjuvanted vaccine derived from rHN20 strain and evaluated its immunogenicity in specific-pathogen-free chickens. Chickens subcutaneously or intramuscularly immunized with the inactivated vaccine produced high titers of neutralizing antibodies and were protected from a lethal dose of virulent wild-type FAdV-4 challenge. Collectively, an inactivated vaccine was developed, which was capable of providing full protection for chickens against HHS, and significantly reduced the potential biosafety threats.


Assuntos
Infecções por Adenoviridae , Aviadenovirus , Hepatite A , Doenças das Aves Domésticas , Vacinas Virais , Infecções por Adenoviridae/prevenção & controle , Infecções por Adenoviridae/veterinária , Animais , Aviadenovirus/imunologia , Galinhas , Hepatite A/veterinária , Doenças das Aves Domésticas/prevenção & controle , Vacinas de Produtos Inativados/imunologia , Vacinas Virais/imunologia
17.
Front Microbiol ; 12: 780978, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925286

RESUMO

Severe hepatitis-hydropericardium syndrome (HHS) associated with a novel viral genotype, fowl adenovirus 4 (FAdV-4), has emerged and widely spread in China since 2015, causing severe economic losses to the poultry industry. We previously reported that the hexon gene is responsible for pathogenicity and obtained a non-pathogenic hexon-replacement rHN20 strain; however, the lack of information about the non-essential regions for virus replication limits the development of a FAdV-4 vector. This study first established an enhanced green fluorescent protein (EGFP)-indicator virus based on the FAdV-4 reverse genetic technique, effective for batch operations in the virus genome. Based on this, 10 open reading frames (ORFs) at the left end and 13 ORFs at the right end of the novel FAdV-4 genome were deleted separately and identified as non-essential genes for viral replication, providing preliminary insertion sites for foreign genes. To further improve its feasibility as a vaccine vector, seven combinations of ORFs were successfully replaced with EGFP without affecting the immunogenicity of the vector backbone. Finally, a recombinant rHN20-vvIBDV-VP2 strain, expressing the VP2 protein of very virulent infectious bursa disease virus (vvIBDV), was rescued and showed complete protection against FAdV-4 and vvIBDV. Thus, the novel FAdV-4 vector could provide sufficient protection for HHS and efficient exogenous gene delivery. Overall, our findings systemically identified 23 non-essential ORFs for FAdV-4 replication and seven foreign gene insertion regions, providing valuable information for an in-depth understanding of the novel FAdV-4 pathogenesis and development of multivalent vaccines.

18.
Acta Pharm Sin B ; 11(10): 3286-3296, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34729316

RESUMO

The functionality of DNA biomacromolecules has been widely excavated, as therapeutic drugs, carriers, and functionalized modification derivatives. In this study, we developed a series of DNA tetrahedron nanocages (Td), via synchronous conjugating different numbers of i-(X) and therapeutic siRNA on four vertexes of tetrahedral DNA nanocage (aX-Td@bsiRNA, a+b = 4). This i-motif-conjugated Td exhibited good endosomal escape behaviours in A549 tumor cells, and the escape efficiency was affected by the number of i-motif. Furthermore, the downregulating mRNA and protein expression level of epidermal growth factor receptor (EGFR) caused by this siRNA embedded Td were verified in A549 cells. The tumor growth inhibition efficiency of the 2X-Td@2siRNA treated group in tumor-bearing mice was significantly higher than that of non-i-motif-conjugated Td@2siRNA (3.14-fold) and free siRNA (3.63-fold). These results demonstrate a general strategy for endowing DNA nanostructures with endosomal escape behaviours to achieve effective in vivo gene delivery and therapy.

19.
Viruses ; 13(11)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34834960

RESUMO

In recent years, hepatitis-hydropericardium syndrome (HHS), caused by novel fowl adenovirus 4 (FAdV-4), has caused serious economic losses to the poultry industry. Vaccines are important for preventing and controlling HHS. Current FAdV-4 vaccine research and development are mainly focuses on inactivated vaccines and relatively fewer live vaccines. We previously demonstrated that the hexon gene is the key gene responsible for the high pathogenicity of FAdV-4 and constructed a non-pathogenic chimeric virus rHN20 strain based on the emerging FAdV-4. In this study, the immunogenicity of artificially rescued rHN20 was evaluated in chickens using different routes and doses as a live vaccine. The live rHN20 vaccine induced high titers of neutralizing antibodies against FAdV-4 and fully protected the immunized chickens against a lethal dose of FAdV-4. Furthermore, immunized chickens showed no clinical symptoms or histopathological changes in the FAdV-4-targeted liver, and the viral load in the tissues of immunized chickens was significantly lower than that of chickens in the challenge control group. Collectively, the live rHN20 vaccine effectively protected our sample against FAdV-4 infection and can be considered a live vaccine candidate for preventing HHS in the poultry industry.


Assuntos
Infecções por Adenoviridae/prevenção & controle , Imunogenicidade da Vacina/imunologia , Vacinas Atenuadas/imunologia , Vacinas Virais/imunologia , Adenoviridae/genética , Infecções por Adenoviridae/imunologia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Aviadenovirus/genética , Galinhas/virologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Sorogrupo , Vacinação , Vacinas de Produtos Inativados/imunologia , Carga Viral
20.
J Adv Res ; 33: 201-213, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34603790

RESUMO

INTRODUCTION: Hypoxic tumor microenvironment (TME) is the major contributor to cancer metastasis, resistance to chemotherapy, and recurrence of tumors. So far, no approved treatment has been available to overcome tumor hypoxia. OBJECTIVES: The present study aimed to relieve tumor hypoxia via a nanozyme theranostic nanomaterial as well as providing magnetic resonance imaging (MRI)-guided therapy. METHODS: Manganese dioxide (MnO2) was used for its intrinsic enzymatic activity co-loaded with the anti-cancer drug Doxorubicin (Dox) within the recombinant heavy-chain apoferritin cavity to form MnO2-Dox@HFn. Following the synthesis of the nanomaterial, different characterizations were performed as well as its nanozyme-like ability. This nanoplatform recognizes tumor cells through the transferrin receptors 1 (TfR1) which are highly expressed on the surface of most cancer cells. The cellular uptake was confirmed by flow cytometry and fluorescence spectroscopy. In vitro and in vivo studies have been investigated to evaluate the hypoxia regulation, MRI ability and anti-tumor activity of MnO2-Dox@HFn. RESULTS: Being a TME-responsive nanomaterial, MnO2-Dox@HFn exerted both peroxidase and catalase activity that mainly produce massive oxygen and Mn2+ ions. Respectively, these products relieve the unfavorable tumor hypoxia and also exhibit T1-weighted MRI with a high longitudinal relaxivity of 33.40 mM. s-1. The utility of MnO2-Dox@HFn was broadened with their efficient anti-cancer activity proved both in vitro and in vivo. CONCLUSIONS: MnO2-Dox@HFn successfully overcome tumor hypoxia with double potentials enzymatic ability and diagnostic capacity. This investigation could ignite the future application for cancer theranostic nanozyme therapy.


Assuntos
Compostos de Manganês , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Óxidos , Medicina de Precisão , Hipóxia Tumoral , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA