Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Neurotherapeutics ; : e00431, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39153914

RESUMO

Glioblastoma (GBM) is a brain tumor characterized by its aggressive and invasive properties. It is found that STAT3 is abnormally activated in GBM, and inhibiting STAT3 signaling can effectively suppress tumor progression. In this study, novel pyrimidine compounds, BY4003 and BY4008, were synthesized to target the JAK3/STAT3 signaling pathway, and their therapeutic efficacy and mechanisms of action were evaluated and compared with Tofacitinib in U251, A172, LN428 and patient-derived glioblastoma cells. The ADP-Glo™ kinase assay was utilized to assessed the inhibitory effects of BY4003 and BY4008 on JAK3, a crucial member of the JAK family. The results showed that both compounds significantly inhibited JAK3 enzyme activity, with IC50 values in the nanomolar range. The antiproliferative effects of BY4003, BY4008, and Tofacitinib on GBM and patient-derived glioblastoma cells were evaluated by MTT and H&E assays. The impact of BY4003 and BY4008 on GBM cell migration and apoptosis induction was assessed through wound healing, transwell, and TUNEL assays. STAT3-regulated protein expression and relative mRNA levels were analyzed by western blotting, immunocytochemistry, immunofluorescence, and qRT-PCR. It was found that BY4003, BY4008 and Tofacitinib could inhibit U251, A172, LN428 and patient-derived glioblastoma cells growth and proliferation. Results showed decreased expression of STAT3-associated proteins, including p-STAT3, CyclinD1, and Bcl-2, and increased expression of Bax, a pro-apoptotic protein, as well as significant down-regulation of STAT3 and STAT3-related genes. These findings suggested that BY4003 and BY4008 could inhibit GBM growth by suppressing the JAK3/STAT3 signaling pathway, providing valuable insights into the therapeutic development of GBM.

2.
Clin Kidney J ; 17(7): sfae168, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39027416

RESUMO

Background: Primary membranous nephropathy (PMN) is an autoimmune kidney disease. Despite the identification of certain autoantigens, the etiology and pathophysiology of PMN are still largely unknown. Methods: Five patients with biopsy-proven PMN were enrolled in this study. Their blood, kidney and urine samples were collected respectively to profile cellular, molecular and immunological alterations by using single-cell RNA sequencing (scRNA-seq). Experimental verifications were also implemented in kidney tissue. Results: In the peripheral blood mononuclear cell (PBMC) samples, portions of B cells and plasma cells were increased in PMN patients. Cell-cell communication analysis suggests that APRIL (a proliferation-inducing ligand from B cells) might be a potential molecule that regulates the activity of plasma cells. In the kidney samples, scRNA-seq analysis showed that the infiltration of T cells, as well as the myeloid cells, appears abundant compared with healthy controls, suggesting that immune cells are actively recruited to kidney. Furthermore, we observed an enhanced interaction between inflammatory cells and podocytes, which might contribute to kidney injury. Accordingly, scRNA-seq analysis of urinary samples is partially reminiscent of the kidney cell landscape, especially T cells and myeloid cells, suggesting monitoring urinary samples is a promising method to monitor PMN development. Additionally, integrative analysis across the blood, kidney and urine identified LTB, HERP1, ANXA1, IL1RN and ICAM1 as common regulators of PMN. Finally, immune repertoire in PBMC also showed an elevated diversity of clonal type, implying the existence of autoreactive T-cell receptor/B-cell receptor. Conclusion: Our study comprehensively profiled the transcriptomic landscapes of blood, kidney and urine in patients with PMN using scRNA-seq. We depicted the alterations including cell compositions and cell-cell communication in PMN. These results offer important clues with regard to the diagnosis and pathogenesis of PMN and potential intervention of PMN progression.

3.
World Neurosurg ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964462

RESUMO

OBJECTIVES: Various nonvascularized or vascularized techniques have been adopted in endoscopic endonasal surgery (EES) for repairing intraoperative cerebrospinal fluid (CSF) leaks after tumor resection. Vascularized nasoseptal flaps, free nasoseptal grafts, free turbinate grafts, and fascia lata and mashed muscle are frequently used. Outcomes of those grafts applied in the defects of different regions need to be clarified. METHODS: The data from a series of 162 patients with skull base tumor who underwent EES that had intraoperative CSF leak between Jan 2012 and Jan 2021 were retrospectively analyzed. The regions included anterior skull base, sellar region, clivus and infratemporal fossa. Repair failure rate (RFR), meningitis rate, and associated risk factors were assessed. RESULTS: In total, 172 reconstructions were performed in 162 patients for the 4 sites of the skull base. There were 7 cases (4.3%) that had postoperative CSF leaks, which required second repair. The RFR for anterior skull base, sellar region, clivus, and infratemporal fossawas 2.6%, 2.2%, 16.7%, and 0%, respectively. The clivus defect was an independent risk factor for repair failure (P < 0.01). The postoperative meningitis rate was 5.6%. Repair failure was an independent risk factor for meningitis (P < 0.01). CONCLUSIONS: Vascularized nasoseptal flap, free nasoseptal graft, free turbinate graft, and fascia lata and mashed muscle are reliable autologous materials for repairing the dural defects in different regions during EES. Clivus reconstruction remains a great challenge, which had a higher RFR and meningitis rate. Repair failure is significantly associated with postoperative meningitis.

4.
Biochem Pharmacol ; 226: 116411, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38972428

RESUMO

Investigating and identifying pathogenic molecules of non-alcoholic fatty liver disease (NAFLD) has become imperative, which would serve as effective targets in the future. We established high-fat diet (HFD)-induced NAFLD model in mice and palmitic acid (PA)-induced model in mouse AML12 cells. The level of miR-218-5p was examined by qRT-PCR, and Elovl5 was identified as the potential target gene of miR-218-5p. The binding relationship between miR-218-5p and Elovl5 was validated by double luciferase reporter gene assay, and inhibition/overexpression of miR-218-5p in vitro. The functional mechanisms of miR-218-5p/Elovl5 in regulating lipogenesis in NAFLD were investigated in vivo and in vitro through gain- and loss-of-function studies. MiR-218-5p was significantly increased, and Elovl5 was decreased in model group. According to the double luciferase reporter and gene interference experiments in AML12 cells, Elovl5 was a target gene of miR-218-5p and its expression was regulated by miR-218-5p. The SREBP1-mediated lipogenesis signaling pathway regulated by Elovl5 was upregulated in model group. Moreover, silencing of miR-218-5p significantly upregulated Elovl5 expression, and suppressed SREBP1 signaling pathway in PA-induced AML-12 cells. Correspondingly, the cell injury, elevated TC, TG contents and lipid droplet accumulation were ameliorated. Furthermore, the effect of miR-218-5p on lipogenesis in vitro and in vivo was obstructed by si-Elovl5, implicating that miR-218-5p promotes lipogenesis by targeting ELOVL5 in NAFLD. miR-218-5p could promote fatty acid synthesis by targeting Elovl5, thereby accelerating the development of NAFLD, which is one of the key pathogenic mechanisms of NAFLD and provides a new molecular target for the management of NAFLD.


Assuntos
Elongases de Ácidos Graxos , Lipogênese , Camundongos Endogâmicos C57BL , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Lipogênese/genética , Lipogênese/fisiologia , Camundongos , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Masculino , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Fígado/patologia , Linhagem Celular , Acetiltransferases/genética , Acetiltransferases/metabolismo
5.
Food Chem ; 458: 140219, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38943966

RESUMO

Diacylglycerol (DAG) has garnered attention for its safe and nutritious qualities, and its utilization in emulsion systems to encapsulate hydrophobic bioactives is anticipated to enhance their bioaccessibility. Thus, this study aimed to evaluate the influence of DAG oil as a carrier on the stability and digestive characteristics of nanostructured lipid carriers (NLCs) containing lycopene (LYC). The results indicated that DAG oil demonstrated superior storage and heating stability in comparison to triacylglycerol (TAG) oil. Furthermore, NLCs formulated with DAG oil exhibited a faster rate of lipolysis (>76.3%) and higher loading capacity (1.48%), resulting in an approximate 11% enhancement in the bioaccessibility of LYC (reaching up to 31.4%). DAG oils show considerable potential for enhancing and prolonging the properties and bioactivity of NLC carriers, thereby boosting bioaccessibility. The incorporation of DAG oil in food systems holds promise for enriching their functionality over traditional TAG oil.

6.
Antioxidants (Basel) ; 13(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38929089

RESUMO

Oxidative stress damage in periparturient cows decreases both production and their health; supplementation with complex additives during the periparturient period has been used as an important strategy to enhance the antioxidant status and production of dairy cows. The periparturient cows not only risk a negative energy balance due to reduced dry matter intake but also represent a sensitive period for oxidative stress. Therefore, we have developed an immunomodulatory and nutritional regulation combined additive (INC) that hopefully can improve the immune status and production of cows during the periparturient period and their offspring health and growth by improving their antioxidant stress status. The INC comprised a diverse array of additives, including water-soluble and fat-soluble vitamins, Selenomethionine, and active dry Saccharomyces cerevisiae. Forty-five multiparous Holstein cows were randomly assigned to three treatments: CON (no INC supplementation, n = 15), INC30 (30 g/d INC supplementation, n = 15), and INC60 (60 g/d INC supplementation, n = 15) based on last lactation milk yield, body condition score, and parity. Newborn calves were administered 4 L of maternal colostrum originating from the corresponding treatment and categorized based on the treatment received by their respective dams. The INC not only served to maintain the antioxidative stress system of dairy cows during the periparturient period but also showed a tendency to improve the immune response (lower tumor necrosis factor and interleukin-6) during the perinatal period. A linear decrease in concentrations of alkaline phosphatase postpartum and ß-hydroxybutyrate was observed with INC supplementation. Milk fat yield, milk protein yield, and energy-corrected milk yield were also increased linearly with increasing additive supplementation. Calves in the INC30 group exhibited greater wither height and chest girth but no significant effect on average daily gain or body weight. The diarrhea frequency was linearly decreased with the incremental level of INC. Results indicate that supplementation with INC in peripartum dairy cows could be a major strategy to improve immune response, decrease inflammation, maintain antioxidant stress status in transition dairy cows, and have merit in their calves. In conclusion, this study underlines the benefits of INC supplementation during the transition period, as it improved anti-inflammatory capacity, could positively impact antioxidative stress capacity, and eventually enhanced the production performance of dairy cows and the health and growth of calves.

8.
Cells ; 13(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38727264

RESUMO

Natural killer (NK) cells can migrate quickly to the tumor site to exert cytotoxic effects on tumors, and some chemokines, including CXCL8, CXCL10 or and CXCL12, can regulate the migration of NK cells. Activin A, a member of the transforming growth factor ß (TGF-ß) superfamily, is highly expressed in tumor tissues and involved in tumor development and immune cell activation. In this study, we focus on the effects of activin A on NK cell migration. In vitro, activin A induced NK cell migration and invasion, promoted cell polarization and inhibited cell adhesion. Moreover, activin A increased Ca2+, p-SMAD3 and p-AKT levels in NK cells. An AKT inhibitor and Ca2+ chelator partially blocked activin A-induced NK cell migration. In vivo, exogenous activin A increased tumor-infiltrating NK cells in NS-1 cell solid tumors and inhibited tumor growth, and blocking endogenous activin A with anti-activin A antibody reduced tumor-infiltrating NK cells in 4T-1 cell solid tumors. These results suggest that activin A induces NK cell migration through AKT signaling and calcium signaling and may enhance the antitumor effect of NK cells by increasing tumor-infiltrating NK cells.


Assuntos
Ativinas , Sinalização do Cálcio , Movimento Celular , Células Matadoras Naturais , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Ativinas/metabolismo , Ativinas/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/imunologia , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo
9.
Int J Biol Macromol ; 271(Pt 1): 132626, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795893

RESUMO

Immobilization of proteolytic enzymes onto nanocarriers is effective to improve drug diffusion in tumors through degrading the dense extracellular matrix (ECM). Herein, immobilization and release behaviors of hyaluronidase, bromelain, and collagenase (Coll) on mesoporous silica nanoparticles (MSNs) were explored. A series of cationic MSNs (CMSNs) with large and adjustable pore sizes were synthesized, and investigated together with two anionic MSNs of different pore sizes. CMSNs4.0 exhibited the highest enzyme loading capacity for hyaluronidase and bromelain, and CMSNs4.5 was the best for Coll. High electrostatic interaction, matched pore size, and large pore volume and surface area favor the immobilization. Changes of the enzyme conformations and surface charges with pH, existence of a space around the immobilized enzymes, and the depth of the pore structures, affect the release ratio and tunability. The optimal CMSNs-enzyme complexes exhibited deep and homogeneous penetration into pancreatic tumors, a tumor model with the densest ECM, with CMSNs4.5-Coll as the best. Upon loading with doxorubicin (DOX), the CMSNs-enzyme complexes induced high anti-tumor efficiencies. Conceivably, the DOX/CMSNs4.5-NH2-Coll nanodrug exhibited the most effective tumor therapy, with a tumor growth inhibition ratio of 86.1 %. The study provides excellent nanocarrier-enzyme complexes, and offers instructive theories for enhanced tumor penetration and therapy.


Assuntos
Doxorrubicina , Enzimas Imobilizadas , Nanopartículas , Dióxido de Silício , Dióxido de Silício/química , Enzimas Imobilizadas/química , Nanopartículas/química , Porosidade , Doxorrubicina/química , Doxorrubicina/farmacologia , Animais , Humanos , Camundongos , Portadores de Fármacos/química , Linhagem Celular Tumoral , Hialuronoglucosaminidase/química , Hialuronoglucosaminidase/metabolismo , Liberação Controlada de Fármacos , Colagenases/metabolismo , Colagenases/química , Bromelaínas/química , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia
10.
Plant Biotechnol J ; 22(8): 2333-2347, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38600703

RESUMO

Sterols have long been associated with diverse fields, such as cancer treatment, drug development, and plant growth; however, their underlying mechanisms and functions remain enigmatic. Here, we unveil a critical role played by a GmNF-YC9-mediated CCAAT-box transcription complex in modulating the steroid metabolism pathway within soybeans. Specifically, this complex directly activates squalene monooxygenase (GmSQE1), which is a rate-limiting enzyme in steroid synthesis. Our findings demonstrate that overexpression of either GmNF-YC9 or GmSQE1 significantly enhances soybean stress tolerance, while the inhibition of SQE weakens this tolerance. Field experiments conducted over two seasons further reveal increased yields per plant in both GmNF-YC9 and GmSQE1 overexpressing plants under drought stress conditions. This enhanced stress tolerance is attributed to the reduction of abiotic stress-induced cell oxidative damage. Transcriptome and metabolome analyses shed light on the upregulation of multiple sterol compounds, including fucosterol and soyasaponin II, in GmNF-YC9 and GmSQE1 overexpressing soybean plants under stress conditions. Intriguingly, the application of soybean steroids, including fucosterol and soyasaponin II, significantly improves drought tolerance in soybean, wheat, foxtail millet, and maize. These findings underscore the pivotal role of soybean steroids in countering oxidative stress in plants and offer a new research strategy for enhancing crop stress tolerance and quality from gene regulation to chemical intervention.


Assuntos
Glycine max , Estresse Fisiológico , Glycine max/genética , Glycine max/fisiologia , Glycine max/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas , Esteroides/metabolismo , Secas , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
11.
Phytochemistry ; 222: 114105, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657886

RESUMO

Three undescribed cassane diterpenoids, caesalpanins D-F (1-3), and seven known ones were isolated from the seeds of Caesalpinia sappan. Structures and absolute configurations of 1-3 were elucidated based on the extensive spectroscopic analysis, single-crystal X-ray diffraction analysis, and ECD calculations. Structurally, compound 1 was the first example of 18-norcassane diterpenoid and 2 was a rare 20-norcassane diterpenoid having an unusual five-membered oxygen bridge between C-10/C-18. The anti-proliferative activity of 1, 3, and 4-10 against PANC-1 cells (pancreatic ductal adenocarcinoma cell line) was evaluated, and phanginin H (4) was found to exhibit anti-cancer activity with IC50 value of 18.13 ± 0.63 µM. Compound 4 inhibited PANC-1 cell growth by arresting the cell cycle at G2/M phase via regulation of cyclin-dependent kinases, and the self-renewal and metastasis of PANC-1 cells by suppressing cancer cell stemness. Furthermore, compound 4 induced ROS generation and subsequently activated autophagy, which was demonstrated by the formation of autophagic vacuoles and dynamic change of autophagic flux. The induced ROS accumulation resulted in AMPK activation and subsequently regulation of mTORC1 activity and ULK phosphorylation, indicating that 4 triggered autophagy through ROS/AMPK/mTORC1 pathway. These findings suggested that 4 might potentially be an autophagy inducer for the therapy of pancreatic cancer.


Assuntos
Proteínas Quinases Ativadas por AMP , Antineoplásicos Fitogênicos , Autofagia , Caesalpinia , Proliferação de Células , Diterpenos , Ensaios de Seleção de Medicamentos Antitumorais , Alvo Mecanístico do Complexo 1 de Rapamicina , Neoplasias Pancreáticas , Espécies Reativas de Oxigênio , Sementes , Caesalpinia/química , Humanos , Diterpenos/farmacologia , Diterpenos/química , Diterpenos/isolamento & purificação , Sementes/química , Autofagia/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/química , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga
12.
Artigo em Inglês | MEDLINE | ID: mdl-38668843

RESUMO

Our study aims to find the relevant mechanism of Mume Fructus in the treatment of triple-negative breast cancer (TNBC) by network pharmacology analysis and experimental validation. The effective compounds of Mume Fructus and TNBC-related target genes were imported into Cytoscape to construct a Mume Fructus-effective compounds-disease target network. The common targets of Mume Fructus and TNBC were determined by drawing Venn diagrams. Then, the intersection targets were transferred to the STRING database to construct a protein-protein interaction (PPI) network. To investigate the mechanism of Mume Fructus in treatment of TNBC, breast cancer cell (MDA-MB-231) was treated with Mume Fructus and/or transfected with small interference RNA-PKM2(siPKM2). CCK-8 assay, cell clonal formation assay, transwell, flow cytometry, qRT-PCR, and western blotting were performed. Eight effective compounds and 145 target genes were obtained, and the Mume Fructus- effective compounds-disease target network was constructed. Then through the analysis of the PPI network, we obtained 10 hub genes including JUN, MAPK1, RELA, AKT1, FOS, ESR1, IL6, MAPK8, RXRA, and MYC. KEGG enrichment analysis showed that JUN, MAPK1, RELA, FOS, ESR1, IL6, MAPK8, and RXRA were enriched in the Th17 cell differentiation signaling pathway. Loss of PKM2 and Mume Fructus both inhibited the malignant phenotype of MDA-MB-231 cells. And siPKM2 further aggravated the Mume Fructus inhibition of malignancy of breast cancer cells. Network pharmacology analysis suggests that Mume Fructus has multiple therapeutic targets for TNBC and may play a therapeutic role by modulating the immune microenvironment of breast cancer.

13.
Birth Defects Res ; 116(3): e2329, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38526193

RESUMO

BACKGROUND: Maternal folate and vitamin B12 deficiency can lead to serious adverse pregnancy outcomes. There are no nationally representative estimates on folate and vitamin B12 status among women of reproductive age (WRA) in Malawi. OBJECTIVE: We assessed folate and vitamin B12 status among nonpregnant WRA in Malawi and predicted the risk of folate-sensitive neural tube defects (NTDs) were they to become pregnant. METHODS: Using data from the cross-sectional, nationally representative 2015-2016 Malawi Micronutrient Survey, we calculated the proportion of folate and vitamin B12 deficiency and insufficiency by demographic characteristics among 778 nonpregnant WRA (15-49 years). We predicted NTD prevalence using red blood cell (RBC) folate distributions and a published Bayesian model of the association between RBC folate and NTD risk. Analyses accounted for complex survey design. RESULTS: Among WRA, 8.5% (95% CI: 6.2, 11.6) and 13.3% (10.0, 17.4) had serum (<7 nmol/L) and RBC folate (<305 nmol/L) deficiency, respectively. The proportion of vitamin B12 deficiency (<148 pmol/L) and insufficiency (≤221 pmol/L) was 11.8% (8.6, 16.0) and 40.6% (34.1, 47.4), respectively. RBC folate insufficiency (<748 nmol/L, defined as the concentration associated with the threshold for elevated NTD risk: >8 cases per 10,000 births) was widespread: 81.4% (75.0, 86.4). The predicted NTD risk nationally was 24.7 cases per 10,000 live births. RBC folate insufficiency and higher predicted NTD risk were more common among WRA living in urban areas or with higher education. CONCLUSIONS: These findings highlight the importance of nutritional and NTD surveillance in Malawi and the opportunity for improving folate and vitamin B12 nutrition among Malawian WRA.


Assuntos
Defeitos do Tubo Neural , Oligoelementos , Gravidez , Feminino , Humanos , Micronutrientes , Ácido Fólico , Vitamina B 12 , Teorema de Bayes , Estudos Transversais , Malaui/epidemiologia , Defeitos do Tubo Neural/epidemiologia , Defeitos do Tubo Neural/etiologia , Nascido Vivo , Vitaminas
14.
Stem Cells Dev ; 33(7-8): 177-188, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38386508

RESUMO

Seipin deficiency is an important cause of type 2 Berardinelli-Seip congenital dyslipidemia (BSCL2). BSCL2 is a severe lipodystrophy syndrome with lack of adipose tissue, hepatic steatosis, insulin resistance, and normal or higher bone mineral density. Bone marrow mesenchymal stem cells (BMSCs) are believed to maintain bone and fat homeostasis by differentiating into osteoblasts and adipocytes. We aimed to explore the role of seipin in the osteogenic/adipogenic differentiation balance of BMSCs. Seipin loxP/loxP mice are used to explore metabolic disorders caused by seipin gene mutations. Compared with wild-type mice, subcutaneous fat deficiency and ectopic fat accumulation were higher in seipin knockout mice. Microcomputed tomography of the tibia revealed the increased bone content in seipin knockout mice. We generated seipin-deficient BMSCs in vitro and revealed that lipogenic genes are downregulated and osteogenic genes are upregulated in seipin-deficient BMSCs. In addition, peroxisome proliferator-activated receptor gamma (PPARγ) signaling is reduced in seipin-deficient BMSCs, while using the PPARγ activator increased the lipogenic differentiation and decreased osteogenic differentiation of seipin-deficient BMSCs. Our findings indicated that bone and lipid metabolism can be regulated by seipin through modulating the differentiation of mesenchymal stem cells. Thus, a new insight of seipin mutations in lipid metabolism disorders was revealed, providing a prospective strategy for MSC transplantation-based treatment of BSCL2.


Assuntos
Subunidades gama da Proteína de Ligação ao GTP , Proteínas Heterotriméricas de Ligação ao GTP , Células-Tronco Mesenquimais , Animais , Camundongos , Diferenciação Celular/genética , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos Knockout , Osteogênese/genética , PPAR gama/genética , PPAR gama/metabolismo , Microtomografia por Raio-X
15.
Malar J ; 23(1): 48, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360586

RESUMO

BACKGROUND: Immunogenic cell death (ICD) is a type of regulated cell death that plays a crucial role in activating the immune system in response to various stressors, including cancer cells and pathogens. However, the involvement of ICD in the human immune response against malaria remains to be defined. METHODS: In this study, data from Plasmodium falciparum infection cohorts, derived from cross-sectional studies, were analysed to identify ICD subtypes and their correlation with parasitaemia and immune responses. Using consensus clustering, ICD subtypes were identified, and their association with the immune landscape was assessed by employing ssGSEA. Differentially expressed genes (DEGs) analysis, functional enrichment, protein-protein interaction networks, and machine learning (least absolute shrinkage and selection operator (LASSO) regression and random forest) were used to identify ICD-associated hub genes linked with high parasitaemia. A nomogram visualizing these genes' correlation with parasitaemia levels was developed, and its performance was evaluated using receiver operating characteristic (ROC) curves. RESULTS: In the P. falciparum infection cohort, two ICD-associated subtypes were identified, with subtype 1 showing better adaptive immune responses and lower parasitaemia compared to subtype 2. DEGs analysis revealed upregulation of proliferative signalling pathways, T-cell receptor signalling pathways and T-cell activation and differentiation in subtype 1, while subtype 2 exhibited elevated cytokine signalling and inflammatory responses. PPI network construction and machine learning identified CD3E and FCGR1A as candidate hub genes. A constructed nomogram integrating these genes demonstrated significant classification performance of high parasitaemia, which was evidenced by AUC values ranging from 0.695 to 0.737 in the training set and 0.911 to 0.933 and 0.759 to 0.849 in two validation sets, respectively. Additionally, significant correlations between the expressions of these genes and the clinical manifestation of P. falciparum infection were observed. CONCLUSION: This study reveals the existence of two ICD subtypes in the human immune response against P. falciparum infection. Two ICD-associated candidate hub genes were identified, and a nomogram was constructed for the classification of high parasitaemia. This study can deepen the understanding of the human immune response to P. falciparum infection and provide new targets for the prevention and control of malaria.


Assuntos
Morte Celular Imunogênica , Malária Falciparum , Humanos , Relevância Clínica , Plasmodium falciparum/genética , Estudos Transversais , Malária Falciparum/genética , Biologia Computacional , Aprendizado de Máquina
16.
Oncol Lett ; 27(3): 109, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38304170

RESUMO

Hepatocellular carcinoma (HCC), a common type of liver cancer, is increasing in incidence worldwide. An early diagnosis of hepatocellular carcinoma (HCC) is still challenging: Currently, few biomarkers are available to diagnose the early stage of HCC, therefore, additional prognostic biomarkers are required to identify potential risk factors. The present study analyzed gene expression levels of HCC tissue samples and the protein expression levels obtained from the GSE46408 HCC dataset using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. The metabolically associated differentially expressed genes (DEGs), including DEGs involved in the glucose metabolism pathway, were selected for further analysis. Phosphoglycerate kinase 1 (PGK1), a glycolytic enzyme, was determined as a potential prognostic biomarker through Kaplan-Meier curve and clinical association variable analyses. This was also verified based on the expression levels of PGK1 in tumor tissue and protein expression levels in several liver cancer cell lines. PGK1 mRNA demonstrated a high level of expression in HCC tissue and was significantly associated with a poor prognosis, showing a negative association with survival time. In addition, as an independent risk factor, PGK1 may potentially be a valuable prognostic biomarker for patients with HCC. Furthermore, expression of PGK1 was associated with the early stages (stage I and T1) of HCC. Moreover, PGK1 mRNA expression levels demonstrated a positive association with progression of liver cancer. The results suggested that PGK1 mRNA may be involved in the degree of HCC malignancy and may be a future potential prognostic biomarker for HCC progression.

17.
BMC Immunol ; 25(1): 5, 2024 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218761

RESUMO

BACKGROUND: The ability of generating effective humoral immune responses to SARS-CoV-2 infection has not been clarified in lymphoma patients. The study aimed to investigate the antibody (Ab) production after SARS-Cov-2 infection and clarify the factors affecting the Ab generation in these patients. PATIENTS & METHODS: 80 lymphoma patients and 51 healthy controls were included in this prospective observational study. Clinical factors and treatment regimens affecting Ab positive rate (APR) and Ab levels were analyzed by univariate and multivariate methods. RESULTS: The anti-SARS-CoV-2 IgG APR and Ab levels in lymphoma patients were significantly lower than those in healthy controls. Lymphoma patients with COVID-19 vaccination had significantly higher APR and Ab levels compared with those without vaccination. Additionally, the use of dexamethasone for COVID-19 treatment had a negative impact on Ab levels. For the impact of treatment regimens on the APR and Ab levels, the results showed that patients treated with ≥ 6 times CD20 monoclonal Ab (mAb) and patients treated with autologous hematopoietic stem cell transplantation (ASCT) prior to infection produced a statistically lower APR and Ab levels compared with those treated with 1-5 times CD20 mAb and those treated without ASCT, respectively. Furthermore, multiple regression analysis indicated that the number of anti-CD20 treatment was an independent predictor for both APR and Ab levels. CONCLUSIONS: Humoral immune response to SARS-CoV-2 infection was impaired in lymphoma patients partly due to anti-CD20 and ASCT treatment. COVID-19 vaccination may be more needed for these patients.


Assuntos
COVID-19 , Linfoma , Esclerose Múltipla , Humanos , Anticorpos Antivirais , Formação de Anticorpos , Tratamento Farmacológico da COVID-19 , Vacinas contra COVID-19 , Imunoglobulina G , Linfoma/terapia , SARS-CoV-2 , Vacinação , Estudos Prospectivos
19.
Int J Nanomedicine ; 19: 403-414, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250189

RESUMO

Background: Radiotherapy is an indispensable part of the multidisciplinary treatment of breast cancer (BC). Due to the potential for serious side effects from ionizing radiation in the treatment of breast cancer, which can adversely affect the patient's quality of life, the radiation dose is often limited. This limitation can result in an incomplete eradication of tumors. Methods: In this study, biomimetic copper single-atom catalysts (platelet cell membrane camouflaging, PC) were synthesized with the aim of improving the therapeutic outcomes of radiotherapy for BC. Following guidance to the tumor site facilitated by the platelet cell membrane coating, PC releases a copper single-atom nanozyme (SAzyme). This SAzyme enhances therapeutic effects by generating reactive oxygen species from H2O2 and concurrently inhibiting the self-repair mechanisms of cancer cells through the consumption of intracellular glutathione (GSH) within the tumor microenvironment. PC-augmented radiotherapy induces immunogenic cell death, which triggers an immune response to eradicate tumors. Results: With the excellent biocompatibility, PC exhibited precise tumor-targeting capabilities. Furthermore, when employed in conjunction with radiotherapy, PC showed impressive tumor elimination results through immunological activation. Remarkably, the tumor suppression rate achieved with PC-enhanced radiotherapy reached an impressive 93.6%. Conclusion: Therefore, PC presents an innovative approach for designing radiosensitizers with tumor-specific targeting capabilities, aiming to enhance the therapeutic impact of radiotherapy on BC.


Assuntos
Neoplasias da Mama , Radioimunoterapia , Humanos , Feminino , Cobre/farmacologia , Peróxido de Hidrogênio , Qualidade de Vida , Neoplasias da Mama/radioterapia , Glutationa , Microambiente Tumoral
20.
Oncol Rep ; 51(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38131250

RESUMO

Activin A, a member of the transforming growth factor­ß (TGF­ß) superfamily, has been implicated in the tumorigenesis and progression of various cancers. However, it remains unclear whether activin A induces apoptosis in human lung adenocarcinoma cells through the endoplasmic reticulum (ER) stress pathway. In the present study, BrdU, flow cytometry and western blotting were used to examine cell proliferation, apoptosis and protein expression, respectively. The present study revealed that activin A inhibited human lung adenocarcinoma A549 cell proliferation, induced apoptosis, and upregulated the protein levels of C/EBP homologous protein (CHOP), growth arrest and DNA damage­inducible protein 34 (GADD34), cleaved­caspase­3 and caspase­12. Furthermore, the administration of activin A did not alter the levels of suppressor of mothers against decapentaplegic 3 (Smad3) or phosphorylated (p)­Smad3 proteins, whereas, it significantly elevated the levels of ActRIIA and p­extracellular signal regulated kinase proteins 1 and 2 (ERK1/2) proteins in A549 cells. The apoptotic effects of activin A on A549 cells were attenuated by the ERK inhibitor FR180204, which also downregulated CHOP and caspase­12 protein levels. Additionally, activin A increased intracellular calcium flux in A549 cells, and the calcium ion chelator BAPTA acetoxymethyl ester (BAPTA­AM) inhibited activin A­induced A549 cell apoptosis, whereas the calcium agonist ionomycin significantly increased apoptosis of A549 cells induced by activin A. These findings indicated that the activation of the ER stress pathway resulting in apoptosis of A549 cells triggered by activin A is facilitated by the ActRIIA­ERK1/2 signaling and calcium signaling. The present findings suggest that the agonists of ERK and calcium signaling exhibit promising clinical therapeutic potential for the induction of apoptosis in lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Células A549 , Cálcio/metabolismo , Caspase 12 , Linhagem Celular Tumoral , Apoptose , Adenocarcinoma de Pulmão/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Estresse do Retículo Endoplasmático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA