Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
1.
Theranostics ; 14(9): 3565-3582, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948069

RESUMO

Cancer therapy has moved from single agents to more mechanism-based targeted approaches. In recent years, the combination of HDAC inhibitors and other anticancer chemicals has produced exciting progress in cancer treatment. Herein, we developed a novel prodrug via the ligation of dichloroacetate to selenium-containing potent HDAC inhibitors. The effect and mechanism of this compound in the treatment of prostate cancer were also studied. Methods: The concerned prodrug SeSA-DCA was designed and synthesized under mild conditions. This compound's preclinical studies, including the pharmacokinetics, cell toxicity, and anti-tumor effect on prostate cancer cell lines, were thoroughly investigated, and its possible synergistic mechanism was also explored and discussed. Results: SeSA-DCA showed good stability in physiological conditions and could be rapidly decomposed into DCA and selenium analog of SAHA (SeSAHA) in the tumor microenvironment. CCK-8 experiments identified that SeSA-DCA could effectively inhibit the proliferation of a variety of tumor cell lines, especially in prostate cancer. In further studies, we found that SeSA-DCA could also inhibit the metastasis of prostate cancer cell lines and promote cell apoptosis. At the animal level, oral administration of SeSA-DCA led to significant tumor regression without obvious toxicity. Moreover, as a bimolecular coupling compound, SeSA-DCA exhibited vastly superior efficacy than the mixture with equimolar SeSAHA and DCA both in vitro and in vivo. Our findings provide an important theoretical basis for clinical prostate cancer treatment. Conclusions: Our in vivo and in vitro results showed that SeSA-DCA is a highly effective anti-tumor compound for PCa. It can effectively induce cell cycle arrest and growth suppression and inhibit the migration and metastasis of PCa cell lines compared with monotherapy. SeSA-DCA's ability to decrease the growth of xenografts is a little better than that of docetaxel without any apparent signs of toxicity. Our findings provide an important theoretical basis for clinical prostate cancer treatment.


Assuntos
Apoptose , Pontos de Checagem do Ciclo Celular , Inibidores de Histona Desacetilases , Neoplasias da Próstata , Fosfatases cdc25 , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Humanos , Animais , Apoptose/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Histona Desacetilases/química , Linhagem Celular Tumoral , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Fosfatases cdc25/metabolismo , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Selênio/farmacologia , Selênio/química , Selênio/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Camundongos Endogâmicos BALB C
2.
Clin Exp Pharmacol Physiol ; 51(8): e13904, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38923060

RESUMO

Myocardial ischemia-reperfusion injury (MIRI) is a common clinic scenario that occurs in the context of reperfusion therapy for acute myocardial infarction. It has been shown that cocaine and amphetamine-regulated transcript (CART) can ameliorate cerebral ischemia-reperfusion (I/R) injury, but the effect of CART on MIRI has not been studied yet. Here, we revealed that CART protected the heart during I/R process by inhibiting apoptosis and excessive autophagy, indicating that CART would be a potential drug candidate for the treatment of MIRI. Further analysis showed that CART upregulated the activation of phospho-AKT, leading to downregulation of lactate dehydrogenase (LDH) release, apoptosis, oxidative stress and excessive autophagy after I/R, which was inhibited by PI3K inhibitor, LY294002. Collectively, CART attenuated MIRI through inhibition of cardiomyocytes apoptosis and excessive autophagy, and the protective effect was dependent on PI3K/AKT signalling pathway.


Assuntos
Apoptose , Autofagia , Traumatismo por Reperfusão Miocárdica , Proteínas do Tecido Nervoso , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Masculino , Autofagia/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley
3.
Sci Rep ; 14(1): 13430, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862696

RESUMO

Previous studies have shown that scutellarin inhibits the excessive activation of microglia, reduces neuronal apoptosis, and exerts neuroprotective effects. However, whether scutellarin regulates activated microglia-mediated neuronal apoptosis and its mechanisms remains unclear. This study aimed to investigate whether scutellarin can attenuate PC12 cell apoptosis induced by activated microglia via the JAK2/STAT3 signalling pathway. Microglia were cultured in oxygen-glucose deprivation (OGD) medium, which acted as a conditioning medium (CM) to activate PC12 cells, to investigate the expression of apoptosis and JAK2/STAT3 signalling-related proteins. We observed that PC12 cells apoptosis in CM was significantly increased, the expression and fluorescence intensity of the pro-apoptotic protein Bax and apoptosis-related protein cleaved caspase-3 were increased, and expression of the anti-apoptotic protein B-cell lymphoma-2 (Bcl-2) was decreased. Phosphorylation levels and fluorescence intensity of the JAK2/STAT3 signalling pathway-related proteins JAK2 and STAT3 decreased. After treatment with scutellarin, PC12 cells apoptosis as well as cleaved caspase-3 and Bax protein expression and fluorescence intensity decreased. The expression and fluorescence intensity of Bcl-2, phosphorylated JAK2, and STAT3 increased. AG490, a specific inhibitor of the JAK2/STAT3 signalling pathway, was used. Our findings suggest that AG490 attenuates the effects of scutellarin. Our study revealed that scutellarin inhibited OGD-activated microglia-mediated PC12 cells apoptosis which was regulated via the JAK2/STAT3 signalling pathway.


Assuntos
Apigenina , Apoptose , Glucuronatos , Janus Quinase 2 , Microglia , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Apigenina/farmacologia , Fator de Transcrição STAT3/metabolismo , Janus Quinase 2/metabolismo , Glucuronatos/farmacologia , Células PC12 , Apoptose/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ratos , Camundongos , Caspase 3/metabolismo , Glucose/metabolismo , Fármacos Neuroprotetores/farmacologia , Fosforilação/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo , Tirfostinas/farmacologia
4.
Food Chem Toxicol ; 190: 114808, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852758

RESUMO

The chemical safety of poly (butylene adipate-co-terephthalate) (PBAT) based food contact articles (FCAs) has aroused increasing toxicological concerns in recent years, but the chemical characterization and associated risk assessment still remain inadequate as it fails to elucidate the distribution pattern and discern the potential genotoxic and carcinogenic hazards of the identified substances. Herein, the volatile organic compounds (VOCs) in 50 batches of PBAT-based FCAs of representative categories and 10 batches of PLA and PBAT pellets were characterized, by which 237 VOCs of 10 chemical categories were identified and exhibited characteristic distribution patterns in the chemical spaces derived from their molecular descriptors. Chemical hazards associated with the identified VOCs were discerned by a hazard-driven classification scheme integrating hazard-related knowledge from multiple publicly available sources, and 34 VOCs were found to bear genotoxic or carcinogenic hazards and to feature higher average molecular weight than the other VOCs. Finally, the Risk and hazard quotient (HQ) calculated as the metrics of risk suggested that all identified VOCs posed acceptable risks (Risk<10-4 or HQ < 1), whereas oxolane, butyrolactone, N,N-dimethylacetamide, 2-butoxyethanol, benzyl alcohol, and 1,2,3-trichloropropane posed non-negligible (Risk>10-6) genotoxic or carcinogenic risk and thus should be of prioritized concern to promote the chemical safety of PBAT-based FCAs.


Assuntos
Embalagem de Alimentos , Poliésteres , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/toxicidade , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/análise , Medição de Risco/métodos , Poliésteres/química , Poliésteres/toxicidade , Humanos
5.
Adv Biol (Weinh) ; 8(7): e2400123, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38684459

RESUMO

Scutellarin is an herbal agent which can exert anti-neuroinflammatory effects in activated microglia. However, it remains uncertain if it can inhibit microglia-mediated neuroinflammation by regulating miRNAs. This study sought to elucidate the upstream regulatory mechanisms by endogenous microRNAs and its target gene in activated microglia in lipopolysaccharide (LPS)-induced BV-2 microglia. Results show that scutellarin suppressed the expression of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and inducible nitric oxide synthase (iNOS) significantly in LPS-stimulated BV-2 microglia. As with the results of miRNAs function classification in vitro, the expression levels of mir-7036a-5p are upregulated in LPS-activated BV-2 microglia, but are downregulated by scutellarin. Rescue experiments indicated that mir-7036a-5p is a pro-inflammatory factor in activated BV-2 microglia. mir-7036a-5p agomir promoted the expression of phosphorylated tau proteins (p-tau), protein kinase C gamma type (PRKCG), extracellular regulated protein kinases (ERK1/2), but the is reversed by mir-7036a-5p antagomir in vitro. It is shown here that mir-7036a-5p is involved in microglia-mediated inflammation in LPS-induced BV-2 microglia. More important is the novel finding that scutellarin mitigated microglia inflammation by down-regulating the mir-7036a-5p/MAPT/PRKCG/ERK signaling pathway.


Assuntos
Apigenina , Glucuronatos , Lipopolissacarídeos , MicroRNAs , Microglia , Apigenina/farmacologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Glucuronatos/farmacologia , Lipopolissacarídeos/farmacologia , MicroRNAs/metabolismo , MicroRNAs/genética , Animais , Camundongos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Linhagem Celular , Proteína Quinase C/metabolismo
6.
World J Clin Cases ; 12(10): 1817-1823, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38660083

RESUMO

BACKGROUND: Carcinosarcoma of the gallbladder is a rare malignant tumor with a very poor prognosis. To date, only approximately 100 patients have been reported in the English literature. The prognosis of this tumor type is poor, the preoperative diagnosis is difficult, and there is a possibility of a misdiagnosis. We present an unsuccessful case of carcinosarcoma of the gallbladder with a preoperative misdiagnosis and rapid early postoperative recurrence. Therefore, we have a deeper understanding of the poor prognosis of gallbladder carcinosarcoma (GBC) patients. CASE SUMMARY: The patient is a 65-year-old male. He was admitted to the hospital because of right upper abdomen distending pain and discomfort for half a month. Abdominal magnetic resonance imaging revealed a polycystic mass in the right lobe of the liver and the fossa of the gallbladder. After admission, the patient was diagnosed with a liver abscess, which was treated by abscess puncture drainage. Obviously, this treatment was unsuccessful. Hepatectomy and cholecystectomy were performed one month after the puncture. Postoperative pathologic examination revealed carcinosarcoma of the gallbladder, and the resected specimen contained two tumor components. One month after surgery, the patient's tumor recurred in situ and started to compress the duodenum, resulting in duodenal obstruction and bleeding. The treatment was not effective. The patient died of gastrointestinal hemorrhage and hypovolemic shock. CONCLUSION: Carcinosarcoma of the gallbladder is a rare malignant tumor that is easily misdiagnosed preoperatively and has a poor prognosis.

7.
Fitoterapia ; 175: 105965, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631599

RESUMO

Four new diterpenoids, including three secolathyrane diterpenoids (1-3) and one lathyrane diterpenoid (4), together with seven known diterpenoids, were obtained in the shelled seeds of Euphorbia lathyris. In particular, 1-3 possess a rare split ring structure, and currently only one compound with the same skeleton has been identified in E. lathyris. Compound 4 furnishes an unprecedented oxygen bridge structure. The structures were identified using various spectral techniques, including NMR, HR-ESI-MS, single-crystal X-ray diffraction and calculated electronic circular dichroism (ECD). The biosynthetic pathway of 1-4 was inferred. Furthermore, the cytotoxic activities of all compounds (1-11) were measured on three human tumor cells. New compounds 2 and 3 showed moderate cytotoxic activities against U937 cells with IC50 values of 22.18 and 25.41 µM, respectively.


Assuntos
Antineoplásicos Fitogênicos , Diterpenos , Euphorbia , Compostos Fitoquímicos , Sementes , Euphorbia/química , Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Diterpenos/química , Humanos , Estrutura Molecular , Sementes/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Linhagem Celular Tumoral , China , Células U937
8.
Cancer Sci ; 115(6): 1749-1762, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508217

RESUMO

N6-Methyladenosine (m6A) is a important process regulating gene expression post-transcriptionally. Programmed death ligand 1 (PD-L1) is a major immune inhibitive checkpoint that facilitates immune evasion and is expressed in tumor cells. In this research we discovered that Wilms' tumor 1-associated protein (WTAP) degradation caused by ubiquitin-mediated cleavage in cancer cells (colorectal cancer, CRC) under hypoxia was inhibited by Pumilio homolog 1 (PUM1) directly bound to WTAP. WTAP enhanced PD-L1 expression in a way that was m6A-dependent. m6A "reader," Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) identified methylated PD-L1 transcripts and subsequently fixed its mRNA. Additionally, we found that T-cell proliferation and its cancer cell-killing effects were prevented by overexpression of WTAP in vitro and in vivo. Overexpression prevented T cells from proliferating and killing CRC by maintaining the expression of PD-L1. Further evidence supporting the WTAP-PD-L1 regulatory axis was found in human CRC and organoid tissues. Tumors with high WTAP levels appeared more responsive to anti-PD1 immunotherapy, when analyzing samples from patients undergoing treatment. Overall, our findings demonstrated a novel PD-L1 regulatory mechanism by WTAP-induced mRNA epigenetic regulation and the possible application of targeting WTAP as immunotherapy for tumor hypoxia.


Assuntos
Adenosina , Antígeno B7-H1 , Neoplasias Colorretais , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Animais , Camundongos , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Feminino , Hipóxia Tumoral/genética , Proteínas de Ciclo Celular
9.
Int J Med Sci ; 21(4): 690-702, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464829

RESUMO

Hyperoside is a natural flavonol glycoside widely found in plants and has been reported to have a variety of pharmacological effects, including anticancer abilities. In this study, we demonstrated for the first time that hyperoside inhibited the proliferation of bladder cancer cells in vitro and in vivo. Moreover, hyperoside could not only induce cell cycle arrest, but also induce apoptosis of a few bladder cancer cells. Quantitative proteomics, bioinformatics analysis and Western blotting confirmed that hyperoside induced the overexpression of EGFR, Ras and Fas proteins, which affects a variety of synergistic and antagonistic downstream signaling pathways, including MAPKs and Akt, ultimately contributing to its anticancer effects in bladder cancer cells. This study reveals that hyperoside could be a promising therapeutic strategy for the prevention of bladder cancer.


Assuntos
Quercetina/análogos & derivados , Transdução de Sinais , Neoplasias da Bexiga Urinária , Humanos , Pontos de Checagem do Ciclo Celular , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Apoptose , Carcinogênese/genética , Receptores ErbB/genética , Proliferação de Células , Linhagem Celular Tumoral
10.
Mol Nutr Food Res ; 68(4): e2200771, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356045

RESUMO

SCOPE: Early diabetic retinopathy (DR) is characterized by chronic inflammation, excessive oxidative stress, and retinal microvascular damage. Syringaresinol (SYR), as a natural polyphenolic compound, has been proved to inhibit many disease progression due to its antiinflammatory and antioxidant properties. The present study focuses on exploring the effect of SYR on hyperglycemia-induced early DR as well as the underlying mechanisms. METHODS AND RESULTS: Wild-type (WT) and nuclear factor erythroid 2-related factor 2 (Nrf2)-knockout C57BL/6 mice of type 1 diabetes and high glucose (HG)-induced RF/6A cells are used as in vivo and in vitro models, respectively. This study finds that SYR protects the retinal structure and function in diabetic mice and reduces the permeability and apoptosis of HG-treated RF/6A cells. Meanwhile, SYR distinctly mitigates inflammation and oxidative stress in vivo and vitro. The retinal microvascular damages are suppressed by SYR via downregulating hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) pathway. Whereas, SYR-provided protective effects are diminished in Nrf2-knockout mice, indicating that SYR improves DR progression by activating Nrf2. Similarly, SYR cannot exert protective effects against HG-induced oxidative stress and endothelial injury in small interfering RNA (siRNA)-Nrf2-transfected RF/6A cells. CONCLUSION: In summary, SYR suppresses oxidative stress via activating Nrf2 antioxidant pathway, which ameliorates retinal microvascular damage by downregulating HIF-1α/VEGF, thereby alleviating early DR progression.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Furanos , Lignanas , Camundongos , Animais , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Camundongos Endogâmicos C57BL , Inflamação , Estresse Oxidativo
11.
J Hazard Mater ; 467: 133663, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38325095

RESUMO

Incorporating spent coffee grounds into single-use drinking straws for enhanced biodegradability also raises safety concerns due to increased chemical complexity. Here, volatile organic compounds (VOCs) present in coffee ground straws (CGS), polylactic acid straws (PLAS), and polypropylene straws (PPS) were characterized using headspace - solid-phase microextraction and migration assays, by which 430 and 153 VOCs of 10 chemical categories were identified by gas chromatography - mass spectrometry, respectively. Further, the VOCs were assessed for potential genetic toxicity by quantitative structure-activity relationship profiling and estimated daily intake (EDI) calculation, revealing that the VOCs identified in the CGS generally triggered the most structural alerts of genetic toxicity, and the EDIs of 37.9% of which exceeded the threshold of 0.15 µg person-1 d-1, also outnumbering that of the PLAS and PPS. Finally, 14 VOCs were prioritized due to their definite hazards, and generally higher EDIs or detection frequencies in the CGS. Meanwhile, the probability of producing safer CGS was also illustrated. Moreover, it was uncovered by chemical space that the VOCs with higher risk potentials tended to gather in the region defined by the molecular descriptor related to electronegativity or octanol/water partition coefficient. Our results provided valuable references to improve the chemical safety of the CGS, to promote consumer health, and to advance the sustainable development of food contact materials.


Assuntos
Café , Compostos Orgânicos Voláteis , Humanos , Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Octanóis , Polipropilenos
12.
Cardiovasc Diabetol ; 23(1): 19, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195474

RESUMO

AIMS: Diabetic cardiomyopathy (DCM) is a major cause of mortality in patients with diabetes, and the potential strategies for treating DCM are insufficient. Melatonin (Mel) has been shown to attenuate DCM, however, the underlying mechanism remains unclear. The role of vascular endothelial growth factor-B (VEGF-B) in DCM is little known. In present study, we aimed to investigate whether Mel alleviated DCM via regulation of VEGF-B and explored its underlying mechanisms. METHODS AND RESULTS: We found that Mel significantly alleviated cardiac dysfunction and improved autophagy of cardiomyocytes in type 1 diabetes mellitus (T1DM) induced cardiomyopathy mice. VEGF-B was highly expressed in DCM mice in comparison with normal mice, and its expression was markedly reduced after Mel treatment. Mel treatment diminished the interaction of VEGF-B and Glucose-regulated protein 78 (GRP78) and reduced the interaction of GRP78 and protein kinase RNA -like ER kinase (PERK). Furthermore, Mel increased phosphorylation of PERK and eIF2α, then up-regulated the expression of ATF4. VEGF-B-/- mice imitated the effect of Mel on wild type diabetic mice. Interestingly, injection with Recombinant adeno-associated virus serotype 9 (AAV9)-VEGF-B or administration of GSK2656157 (GSK), an inhibitor of phosphorylated PERK abolished the protective effect of Mel on DCM. Furthermore, rapamycin, an autophagy agonist displayed similar effect with Mel treatment; while 3-Methyladenine (3-MA), an autophagy inhibitor neutralized the effect of Mel on high glucose-treated neonatal rat ventricular myocytes. CONCLUSIONS: These results demonstrated that Mel attenuated DCM via increasing autophagy of cardiomyocytes, and this cardio-protective effect of Mel was dependent on VEGF-B/GRP78/PERK signaling pathway.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Melatonina , Humanos , Camundongos , Ratos , Animais , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/prevenção & controle , Miócitos Cardíacos , Fator B de Crescimento do Endotélio Vascular , Melatonina/farmacologia , Chaperona BiP do Retículo Endoplasmático , Diabetes Mellitus Experimental/tratamento farmacológico , Transdução de Sinais , Autofagia , Glucose
13.
Anticancer Drugs ; 35(2): 129-139, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37615540

RESUMO

Colorectal cancer (CRC) is one of the world's most common and deadly cancers. According to GLOBOCAN2020's global incidence rate and mortality estimates, CRC is the third main cause of cancer and the second leading cause of cancer-related deaths worldwide. The US Food and Drug Administration has approved auranofin for the treatment of rheumatoid arthritis. It is a gold-containing chemical that inhibits thioredoxin reductase. Auranofin has a number of biological activities, including anticancer activity, although it has not been researched extensively in CRC, and the mechanism of action on CRC cells is still unknown. The goal of this research was to see how Auranofin affected CRC cells in vivo and in vitro . The two chemical libraries were tested for drugs that make CRC cells more responsive. The CCK-8 technique was used to determine the cell survival rate. The invasion, migration, and proliferation of cells were assessed using a transwell test and a colony cloning experiment. An electron microscope was used to observe autophagosome formation. Western blotting was also used to determine the degree of expression of related proteins in cells. Auranofin's tumor-suppressing properties were further tested in a xenograft tumor model of human SW620 CRC cells. Auranofin dramatically reduced the occurrence of CRC by decreasing the proliferation, migration, and invasion of CRC cells, according to our findings. Through a mTOR-dependent mechanism, auranofin inhibits the epithelial-mesenchymal transition (EMT) and induces autophagy in CRC cells. Finally, in-vivo tests revealed that auranofin suppressed tumor growth in xenograft mice while causing no harm. In summary, auranofin suppresses CRC cell growth, invasion, and migration. Auranofin inhibits the occurrence and progression of CRC by decreasing EMT and inducing autophagy in CRC cells via a mTOR-dependent mechanism. These findings suggest that auranofin could be a potential chemotherapeutic medication for the treatment of human CRC.


Assuntos
Auranofina , Neoplasias Colorretais , Humanos , Animais , Camundongos , Auranofina/farmacologia , Auranofina/uso terapêutico , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Neoplasias Colorretais/patologia , Autofagia , Transição Epitelial-Mesenquimal , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
14.
Chin J Integr Med ; 30(1): 34-41, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37076638

RESUMO

OBJECTIVE: To investigate the effects of asperuloside on cervical cancer based on endoplasmic reticulum (ER) stress and mitochondrial pathway. METHODS: Different doses (12.5-800 µg/mL) of asperuloside were used to treat cervical cancer cell lines Hela and CaSki to calculate the half maximal inhibitory concentration (IC50) of asperuloside. The cell proliferation was analyzed by clone formation assay. Cell apoptosis, intracellular reactive oxygen species (ROS) and mitochondrial membrane potential were determined by flow cytometry. The protein expressions of cleaved-caspase-3, Bcl-2, Bax, Cyt-c, cleaved-caspase-4 and glucose-regulated protein 78 (GRP78) were analyzed by Western blot. And the inhibitor of ER stress, 4-phenyl butyric acid (4-PBA) was used to treat cervical cancer cells to further verify the role of ER stress in the apoptosis of cervical cancer cells induced by asperuloside. RESULTS: Asperuloside of 325, 650, and 1300 µg/mL significantly inhibited the proliferation and promoted apoptosis of Hela and CaSki cells (P<0.01). All doses of asperuloside significantly increased intracellular ROS levels, reduced mitochondrial membrane potential, significantly reduced Bcl-2 protein expression level, and increased Bax, Cyt-c, GRP78 and cleaved-caspase-4 expressions (P<0.01). In addition, 10 mmol/L 4-PBA treatment significantly promoted cell proliferation and reduced apoptosis (P<0.05), and 650 µg/mL asperuloside could reverse 4-PBA-induced increased cell proliferation, decreased apoptosis and cleaved-caspase-3, -4 and GRP78 protein expressions (P<0.05). CONCLUSION: Our study revealed the role of asperuloside in cervical cancer, suggesting that asperuloside promotes apoptosis of cervical cancer cells through ER stress-mitochondrial pathway.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Caspase 3/metabolismo , Proteína X Associada a bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Chaperona BiP do Retículo Endoplasmático , Células HeLa , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose , Estresse do Retículo Endoplasmático , Linhagem Celular Tumoral
15.
Gastrointest Endosc ; 99(3): 387-397.e6, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37858760

RESUMO

BACKGROUND AND AIMS: The Zhongshan colorectal endoscopic submucosal dissection (CR-ESD) score model was proposed to grade the technical difficulty of CR-ESD. The objective of this study was to prospectively validate and update the score model. METHODS: A multicenter prospective cohort analysis of CR-ESD was conducted. Individual data on patients, lesions, and outcomes of CR-ESD were used to validate the original model and further refine the difficulty of the prediction model. Data were randomly divided into discovery and internal validation cohorts. A multivariate Cox regression analysis was conducted on the discovery cohort to develop an updated risk-scoring system, which was then validated. RESULTS: Five hundred forty-eight patients with 565 colorectal lesions treated by ESD from 4 hospitals were included. In the prospective validation cohort, the area under the receiver-operating characteristic (ROC) curve for the original model was .707. Six risk factors were identified and assigned point values: tumor size (2 points for 30-50 mm, 3 points for ≥50 mm), at least two-thirds circumference of the lesion (3 points), tumor location in the cecum (2 points) or flexure (2 points), laterally spreading tumor-nongranular lesions (1 point), preceding biopsy sampling (1 point), and NBI International Colorectal Endoscopic type 3 (3 points). The updated model had an area under the ROC curve of .738 in the discovery cohort and of .782 in the validation cohort. Cases were categorized into easy (score = 0-1), intermediate (score = 2-3), difficult (score = 4-6), and very difficult (score ≥7) groups. Satisfactory discrimination and calibration were observed. CONCLUSIONS: The original model achieved an acceptable level of prediction in the prospective cohort. The updated model exhibited superior performance and can be used in place of the previous version. (Clinical trial registration number: ChiCTR2100047087.).


Assuntos
Neoplasias Colorretais , Ressecção Endoscópica de Mucosa , Humanos , Ressecção Endoscópica de Mucosa/efeitos adversos , Neoplasias Colorretais/patologia , Estudos Prospectivos , Estudos Retrospectivos , Estudos de Coortes , Resultado do Tratamento
16.
Exp Parasitol ; 256: 108649, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37914152

RESUMO

Type 1 diabetes mellitus is a chronic disease caused by the destruction of pancreatic beta cells. Based on the hygiene hypothesis, a growing body of evidence suggests a negative association between parasitic infections and diabetes in humans and animal models. The mechanism of parasite-mediated prevention of type 1 diabetes mellitus may be related to the adaptive and innate immune systems. Macrophage polarization is a new paradigm for the treatment of type 1 diabetes mellitus, and different host macrophage subsets play various roles during parasite infection. Proinflammatory cytokines are released by M1 macrophages, which are important in the development of type 1 diabetes mellitus. Parasite-activated M2 macrophages prevent the development of type 1 diabetes mellitus and can influence the development of adaptive immune responses through several mechanisms, including Th2 cells and regulatory T cells. Here, we review the role and mechanism of macrophage polarization in parasitic protection against type 1 diabetes mellitus.


Assuntos
Diabetes Mellitus Tipo 1 , Parasitos , Doenças Parasitárias , Humanos , Animais , Diabetes Mellitus Tipo 1/prevenção & controle , Macrófagos , Citocinas , Células Th2 , Ativação de Macrófagos
17.
Medicine (Baltimore) ; 102(46): e35515, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37986403

RESUMO

OBJECTIVE: A clinical diagnostic model of gastric low-grade intraepithelial neoplasia (LGIN) was developed and validated to improve the identification of precancerous lesions in gastric cancer. METHODS: A retrospective analysis of 1211 patients with chronic atrophic gastritis (CAG) and 1089 patients with LGIN admitted to the Endoscopy Center of the First Affiliated Hospital of Bengbu Medical College from January 2016 to December 2021 was performed to record basic clinical and pathological information.A total of 1756 patients were included after screening and were divided unequally and randomly into 2 groups, one for establishing an LGIN predictive nomogram (70% of patients) and the other for external validation of the model (30% of patients). R software was used for statistical analysis. RESULTS: The nomogram was built with 10 predictors: age, sex, lesion location, intestinal metaplasia, multiple location, lesion size, erosion, edema, surface white fur, and form. The calibration curves showed good agreement between the predicted and actual diagnoses. The C-indexes were 0.841 (95% CI: 0.820-0.863) in the training dataset, 0.833 in the internal validation dataset, and 0.842 in the external validation dataset (Hosmer-Lemeshow test, P = .612), showing satisfactory stableness. CONCLUSIONS: This study provides a visual mathematical model that can be used to diagnose high-risk LGIN, improve follow-up or endoscopic treatment and the detection rate of precancerous gastric cancer lesions, reduce the incidence of gastric cancer, and provide a reliable basis for the treatment of LGIN.


Assuntos
Carcinoma in Situ , Lesões Pré-Cancerosas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/patologia , Estudos Retrospectivos , Carcinoma in Situ/patologia , Lesões Pré-Cancerosas/diagnóstico , Endoscopia Gastrointestinal
18.
Biochem Biophys Res Commun ; 681: 218-224, 2023 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-37783120

RESUMO

Epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancer (NSCLC) is clinically and genetically heterogeneous, with concurrent RB1/TP53 mutations, indicating an increased risk of transformation into small cell lung cancer (SCLC). When tumor cells convert into a different histological subtype, they lose their dependence on the original oncogenic driver, resulting in therapeutic resistance. However, the molecular details associated with this transformation remain unclear. It has been difficult to define molecular mechanisms of neuroendocrine (NE) transformation in lung cancer due to a lack of pre- and post-transformation clinical samples. In this study, we established a NSCLC cell line with concurrent RB1/TP53 mutations and built corresponding patient-derived xenograft (PDX) models to investigate the mechanisms underlying transformation to SCLC. Studying these PDX models, we demonstrate that EGFR loss facilitates lineage plasticity of lung adenocarcinoma initiated by biallelic mutations of TP53 and RB1. Gene expression analysis of these EGFR knockout tumors revealed altered expression of neuroendocrine synapse-associated lineage genes. There is an increased expression of epigenetic reprogramming factors like Sox2 and gene associated with neural development like NTRK in these EGFR knockout tumors. These findings uncovered the role of EGFR in the acquisition of plasticity, which is the ability of a cell to substantially modify its identity and take on a new phenotype, and defined a novel landscape of potential drivers of NE transformation in lung cancer.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Adenocarcinoma de Pulmão/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/genética , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Carcinoma de Pequenas Células do Pulmão/patologia , Animais
19.
Front Pharmacol ; 14: 1225515, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745048

RESUMO

Object: This research intended to probe the antibacterial effect and pharmacodynamic substances of Tea-Seed Oil (TSO) through the use of ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) analysis, network analysis, and molecular docking. Methods: The major chemical components in the methanol-extracted fractions of TSO were subjected to UPLC-Q-TOF-MS. Network pharmacology and molecular docking techniques were integrated to investigate the core components, targets, and potential mechanisms of action through which the TSO exert their antibacterial properties. To evaluate the inhibitory effects, the minimum inhibitory concentration and diameter of the bacteriostatic circle were calculated for the potential active ingredients and their equal ratios of combinatorial components (ERCC) against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. Moreover, the quantification of the active constituents within TSO was achieved through the utilization of high-performance liquid chromatography (HPLC). Results: The methanol-extracted fractions contained a total of 47 chemical components, predominantly consisting of unsaturated fatty acids and phenolic compounds. The network pharmacology analysis and molecular docking analysis revealed that various components, including gallocatechin, gallic acid, epigallocatechin, theophylline, chlorogenic acid, puerarin, and phlorizin, have the ability to interact with critical core targets such as serine/threonine protein kinase 1 (AKT1), epidermal growth factor receptor (EGFR), a monoclonal antibody to mitogen-activated protein kinase 14 (MAPK14), HSP90AA1, and estrogen receptor 1 (ESR1). Furthermore, these components can modulate the phosphatidylinositol-3-kinase protein kinase B (PI3K-AKT), estrogen, MAPK and interleukin 17 (IL-17) signaling pathways, hereby exerting antibacterial effects. In vitro validation trials have found that seven components, namely gallocatechin, gallic acid, epigallocatechin, theophylline, chlorogenic acid, puerarin, and phloretin, displayed substantial inhibitory effects on E. coli, S. aureus, P. aeruginosa, and C. albicans, and are typically present in tea oil, with a total content ranging from 15.87∼24.91 µg·g-1. Conclusion: The outcomes of this investigation possess the possibility to expand our knowledge base concerning the utilization of TSO, furnish a theoretical framework for the exploration of antibacterial drugs and cosmetics derived from inherently occurring TSO, and establish a robust groundwork for the advancement and implementations of TOS products within clinical settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA