Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 16(9): 8000-8018, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38709280

RESUMO

Lactate dehydrogenase A (LDHA), a critical enzyme involved in glycolysis, is broadly involved multiple biological functions in human cancers. It is reported that LDHA can impact tumor immune surveillance and induce the transformation of tumor-associated macrophages, highlighting its unnoticed function of LDHA in immune system. However, in human cancers, the role of LDHA in prognosis and immunotherapy hasn't been investigated. In this study, we analyzed the expression pattern and prognostic value of LDHA in pan-cancer and explored its association between tumor microenvironment (TME), immune infiltration subtype, stemness scores, tumor mutation burden (TMB), and immunotherapy resistance. We found that LDHA expression is tumor heterogeneous and that its high expression is associated with poor prognosis in multiple human cancers. In addition, LDHA expression was positively correlated with the presence of mononuclear/macrophage cells, and also promoted the infiltration of a range of immune cells. Genomic alteration of LDHA was common in different types of cancer, while with prognostic value in pan-cancers. Pan-cancer analysis revealed that the significant correlations existed between LDHA expression and tumor microenvironment (including stromal cells and immune cells) as well as stemness scores (DNAss and RNAss) across cancer types. Drug sensitivity analysis also revealed that LDHA was able to predict response to chemotherapy and immunotherapy. Furthermore, it was confirmed that knockdown of LDHA reduced proliferation and migration ability of lung cancer cells. Taken together, LDHA could serve as a prognostic biomarker and a potential immunotherapy marker.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Imunoterapia , Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Prognóstico , Neoplasias/imunologia , Neoplasias/genética , Neoplasias/terapia , Resistencia a Medicamentos Antineoplásicos/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/genética , Linhagem Celular Tumoral
2.
Immun Inflamm Dis ; 11(11): e1082, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38018604

RESUMO

OBJECTIVE: Cystic echinococcosis (CE), a zoonotic parasitic disease caused by Echinococcus granulosus, remains a public health and socioeconomic issue worldwide, making its prevention and treatment of vital importance. The aim of this study was to investigate changes in the intestinal microbiota of mice immunized with three peptide vaccines based on the recombinant antigen of E. granulosus, P29 (rEg.P29), with the hope of providing more valuable information for the development of vaccines against CE. METHODS: Three peptide vaccines, rEg.P29T , rEg.P29B , and rEg.P29T + B , were prepared based on rEg.P29, and a subcutaneous immunization model was established. The intestinal floras of mice in the different immunization groups were analyzed by 16 S rRNA gene sequencing. RESULTS: The intestinal microbiota analysis at both immunization time points revealed that Firmicutes, Bacteroidota, and Verrucomicrobiota were the predominant flora at the phylum level, while at the genus level, Akkermansia, unclassified_Muribaculaceae, Lachnospiraceae_NK4A136_group, and uncultured_rumen bacterium were the dominant genera. Some probiotics in the intestines of mice were significantly increased after immunization with the peptide vaccines, such as Lactobacillus_taiwanensis, Lactobacillus_reuteri, Lachnospiraceae_NK4A136_group, Bacteroides_acidifaciens, and so forth. Meanwhile, some harmful or conditionally pathogenic bacteria were decreased, such as Turicibacter sanguinis, Desulfovibrio_fairfieldensis, Clostridium_sp, and so forth, most of which are associated with inflammatory or infectious diseases. Kyoto Encyclopaedia of Genes and Genomes enrichment analysis revealed that the differential flora were enriched in multiple metabolic pathways, primarily biological systems, human diseases, metabolism, cellular processes, and environmental information processing. CONCLUSION: In this study, we comprehensively analyzed and compared changes in the intestinal microbiota of mice immunized with three peptide vaccines as well as their related metabolic pathways, providing a theoretical background for the development of novel vaccines against E. granulosus.


Assuntos
Equinococose , Echinococcus granulosus , Microbioma Gastrointestinal , Animais , Humanos , Camundongos , Microbioma Gastrointestinal/genética , Epitopos , Echinococcus granulosus/genética , Zoonoses , Proteínas Recombinantes , Vacinas de Subunidades Antigênicas , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA