Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427921

RESUMO

Leaf senescence is a vital aspect of plant physiology and stress responses and is induced by endogenous factors and environmental cues.. The plant-specific NAC (NAM, ATAF1/2, CUC2) transcription factor family influences growth, development, and stress responses in Arabidopsis (Arabidopsis thaliana) and other species. However, the roles of NACs in tobacco (Nicotiana tabacum) leaf senescence are still unclear. Here, we report that NtNAC56 regulates leaf senescence in tobacco. Transgenic plants overexpressing NtNAC56 (NtNAC56-OE) showed induction of senescence-related genes and exhibited early senescence and lower chlorophyll content compared to wild-type (WT) plants and the Ntnac56-19 mutant. In addition, root development and seed germination were inhibited in the NtNAC56-OE lines. Transmission electron microscopy observations accompanied by physiological and biochemical assays revealed that NtNAC56 overexpression triggers chloroplast degradation and reactive oxygen species accumulation in tobacco leaves. Transcriptome analysis demonstrated that NtNAC56 activates leaf senescence-related genes and jasmonic acid (JA) biosynthesis pathway genes. In addition, the JA content of NtNAC56-OE plants was higher than in WT plants, and JA treatment induced NtNAC56 expression. We performed DNA affinity purification sequencing to identify direct targets of NtNAC56, among which we focused on LIPOXYGENASE 5 (NtLOX5), a key gene in JA biosynthesis. A dual-luciferase reporter assay and a yeast one-hybrid assay confirmed that NtNAC56 directly binds to the TTTCTT motif in the NtLOX5 promoter. Our results reveal a mechanism whereby NtNAC56 regulates JA-induced leaf senescence in tobacco and provide a strategy for genetically manipulating leaf senescence and plant growth.

2.
Biotechnol Biofuels ; 13: 90, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32467731

RESUMO

BACKGROUND: Brassica rapa is an important oilseed and vegetable crop species and is the A subgenome donor of two important oilseed Brassica crops, Brassica napus and Brassica juncea. Although seed size (SZ), seed color (SC), and oil content (OC) substantially affect seed yield and quality, the mechanisms regulating these traits in Brassica crops remain unclear. RESULTS: We collected seeds from a pair of B. rapa accessions with significantly different SZ, SC, and OC at seven seed developmental stages (every 7 days from 7 to 49 days after pollination), and identified 28,954 differentially expressed genes (DEGs) from seven pairwise comparisons between accessions at each developmental stage. K-means clustering identified a group of cell cycle-related genes closely connected to variation in SZ of B. rapa. A weighted correlation analysis using the WGCNA package in R revealed two important co-expression modules comprising genes whose expression was positively correlated with SZ increase and negatively correlated with seed yellowness, respectively. Upregulated expression of cell cycle-related genes in one module was important for the G2/M cell cycle transition, and the transcription factor Bra.A05TSO1 seemed to positively stimulate the expression of two CYCB1;2 genes to promote seed development. In the second module, a conserved complex regulated by the transcription factor TT8 appear to determine SC through downregulation of TT8 and its target genes TT3, TT18, and ANR. In the third module, WRI1 and FUS3 were conserved to increase the seed OC, and Bra.A03GRF5 was revealed as a key transcription factor on lipid biosynthesis. Further, upregulation of genes involved in triacylglycerol biosynthesis and storage in the seed oil body may increase OC. We further validated the accuracy of the transcriptome data by quantitative real-time PCR of 15 DEGs. Finally, we used our results to construct detailed models to clarify the regulatory mechanisms underlying variations in SZ, SC, and OC in B. rapa. CONCLUSIONS: This study provides insight into the regulatory mechanisms underlying the variations of SZ, SC, and OC in plants based on transcriptome comparison. The findings hold great promise for improving seed yield, quality and OC through genetic engineering of critical genes in future molecular breeding.

3.
Int J Mol Sci ; 18(12)2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29261107

RESUMO

Galactinol synthase (GolS) is a key enzyme in raffinose family oligosaccharide (RFO) biosynthesis. The finding that GolS accumulates in plants exposed to abiotic stresses indicates RFOs function in environmental adaptation. However, the evolutionary relationships and biological functions of GolS family in rapeseed (Brassica napus) and tobacco (Nicotiana tabacum) remain unclear. In this study, we identified 20 BnGolS and 9 NtGolS genes. Subcellular localization predictions showed that most of the proteins are localized to the cytoplasm. Phylogenetic analysis identified a lost event of an ancient GolS copy in the Solanaceae and an ancient duplication event leading to evolution of GolS4/7 in the Brassicaceae. The three-dimensional structures of two GolS proteins were conserved, with an important DxD motif for binding to UDP-galactose (uridine diphosphate-galactose) and inositol. Expression profile analysis indicated that BnGolS and NtGolS genes were expressed in most tissues and highly expressed in one or two specific tissues. Hormone treatments strongly induced the expression of most BnGolS genes and homologous genes in the same subfamilies exhibited divergent-induced expression. Our study provides a comprehensive evolutionary analysis of GolS genes among the Brassicaceae and Solanaceae as well as an insight into the biological function of GolS genes in hormone response in plants.


Assuntos
Brassica rapa/genética , Evolução Molecular , Galactosiltransferases/genética , Genoma de Planta , Nicotiana/genética , Proteínas de Plantas/genética , Brassica rapa/classificação , Brassica rapa/enzimologia , Sequência Conservada , Galactosiltransferases/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Nicotiana/classificação , Nicotiana/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA