Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Steroids ; 205: 109391, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38437943

RESUMO

A unified total synthesis route has been used to prepare 18- and 19-trideuterated testosterone, androstenedione and progesterone. The 18-trideuterated steroid synthetic method starts with the synthesis of 2-(methyl-d3)-1,3-cyclopentanedione from CD3I and 1,3-cyclopentanedione and is subsequently converted into the Hajos-Parrish ketone for synthesis of these trideuterated steroids. The 19-trideuterated steroid synthesis proceeds through non-deuterated Hajos-Parrish ketone with incorporation of the 19-methyl-d3 group from CD3I at a later stage of the same synthetic route. Utilization of CD3I at both the initial and later stages of the synthesis provides a route to 18,19-hexadeuterated steroids. The deuterated steroids are useful for studies of steroid biosynthesis and metabolism.


Assuntos
Androstenodiona , Progesterona , Androstenodiona/metabolismo , Progesterona/metabolismo , Testosterona/metabolismo , Esteroides , Cetonas
2.
EBioMedicine ; 92: 104627, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37267847

RESUMO

BACKGROUND: GM1 gangliosidosis is a rare, fatal, neurodegenerative disease caused by mutations in the GLB1 gene and deficiency in ß-galactosidase. Delay of symptom onset and increase in lifespan in a GM1 gangliosidosis cat model after adeno-associated viral (AAV) gene therapy treatment provide the basis for AAV gene therapy trials. The availability of validated biomarkers would greatly improve assessment of therapeutic efficacy. METHODS: The liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to screen oligosaccharides as potential biomarkers for GM1 gangliosidosis. The structures of pentasaccharide biomarkers were determined with mass spectrometry, as well as chemical and enzymatic degradations. Comparison of LC-MS/MS data of endogenous and synthetic compounds confirmed the identification. The study samples were analyzed with fully validated LC-MS/MS methods. FINDINGS: We identified two pentasaccharide biomarkers, H3N2a and H3N2b, that were elevated more than 18-fold in patient plasma, cerebrospinal fluid (CSF), and urine. Only H3N2b was detectable in the cat model, and it was negatively correlated with ß-galactosidase activity. Following intravenous (IV) AAV9 gene therapy treatment, reduction of H3N2b was observed in central nervous system, urine, plasma, and CSF samples from the cat model and in urine, plasma, and CSF samples from a patient. Reduction of H3N2b accurately reflected normalization of neuropathology in the cat model and improvement of clinical outcomes in the patient. INTERPRETATIONS: These results demonstrate that H3N2b is a useful pharmacodynamic biomarker to evaluate the efficacy of gene therapy for GM1 gangliosidosis. H3N2b will facilitate the translation of gene therapy from animal models to patients. FUNDING: This work was supported by grants U01NS114156, R01HD060576, ZIAHG200409, and P30 DK020579 from the National Institutes of Health (NIH) and a grant from National Tay-Sachs and Allied Diseases Association Inc.


Assuntos
Gangliosidose GM1 , Doenças Neurodegenerativas , Animais , Gangliosidose GM1/genética , Gangliosidose GM1/terapia , Gangliosidose GM1/patologia , Doenças Neurodegenerativas/terapia , Cromatografia Líquida , Espectrometria de Massas em Tandem , beta-Galactosidase/genética , beta-Galactosidase/química , beta-Galactosidase/uso terapêutico , Biomarcadores/líquido cefalorraquidiano , Terapia Genética
3.
Nat Commun ; 12(1): 7171, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887403

RESUMO

Hedgehog (HH) morphogen signalling, crucial for cell growth and tissue patterning in animals, is initiated by the binding of dually lipidated HH ligands to cell surface receptors. Hedgehog-Interacting Protein (HHIP), the only reported secreted inhibitor of Sonic Hedgehog (SHH) signalling, binds directly to SHH with high nanomolar affinity, sequestering SHH. Here, we report the structure of the HHIP N-terminal domain (HHIP-N) in complex with a glycosaminoglycan (GAG). HHIP-N displays a unique bipartite fold with a GAG-binding domain alongside a Cysteine Rich Domain (CRD). We show that HHIP-N is required to convey full HHIP inhibitory function, likely by interacting with the cholesterol moiety covalently linked to HH ligands, thereby preventing this SHH-attached cholesterol from binding to the HH receptor Patched (PTCH1). We also present the structure of the HHIP C-terminal domain in complex with the GAG heparin. Heparin can bind to both HHIP-N and HHIP-C, thereby inducing clustering at the cell surface and generating a high-avidity platform for SHH sequestration and inhibition. Our data suggest a multimodal mechanism, in which HHIP can bind two specific sites on the SHH morphogen, alongside multiple GAG interactions, to inhibit SHH signalling.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas Hedgehog/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Transdução de Sinais , Proteínas de Transporte/genética , Colesterol/química , Colesterol/metabolismo , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Proteínas Hedgehog/química , Proteínas Hedgehog/genética , Humanos , Ligantes , Glicoproteínas de Membrana/genética , Ligação Proteica , Domínios Proteicos
4.
Anal Chem ; 89(4): 2636-2644, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28194953

RESUMO

Identifying sites of protein-ligand interaction is important for structure-based drug discovery and understanding protein structure-function relationships. Mass spectrometry (MS) has emerged as a useful tool for identifying residues covalently modified by ligands. Current methods use database searches that are dependent on acquiring interpretable fragmentation spectra (MS2) of peptide-ligand adducts. This is problematic for identifying sites of hydrophobic ligand incorporation in integral membrane proteins (IMPs), where poor aqueous solubility and ionization of peptide-ligand adducts and collision-induced adduct loss hinder the acquisition of quality MS2 spectra. To address these issues, we developed a fast ligand identification (FLI) tag that can be attached to any alkyne-containing ligand via Cu(I)-catalyzed cycloaddition. The FLI tag adds charge to increase solubility and ionization, and utilizes stable isotope labeling for MS1 level identification of hydrophobic peptide-ligand adducts. The FLI tag was coupled to an alkyne-containing neurosteroid photolabeling reagent and used to identify peptide-steroid adducts in MS1 spectra via the stable heavy isotope pair. Peptide-steroid adducts were not identified in MS2-based database searches because collision-induced adduct loss was the dominant feature of collision-induced dissociation (CID) fragmentation, but targeted analysis of MS1 pairs using electron transfer dissociation (ETD) markedly reduced adduct loss. Using the FLI tag and ETD, we identified Glu73 as the site of photoincorporation of our neurosteroid ligand in the IMP, mouse voltage-dependent anion channel-1 (mVDAC1), and top-down MS confirmed a single site of photolabeling.


Assuntos
Ligantes , Peptídeos/química , Espectrometria de Massas em Tandem , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Alcinos/química , Sequência de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão , Química Click , Interações Hidrofóbicas e Hidrofílicas , Marcação por Isótopo , Camundongos , Peptídeos/metabolismo , Solubilidade , Raios Ultravioleta , Canal de Ânion 1 Dependente de Voltagem/química
5.
Org Biomol Chem ; 14(41): 9790-9805, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27714297

RESUMO

Estrone and 17ß-estradiol are phenolic steroids that are known to be neuroprotective in multiple models of neuronal injury. Previous studies have identified the importance of their phenolic steroid A-ring for neuroprotection and have identified ortho substituents at the C-2 and C-4 positions on the phenol ring that enhance this activity. To investigate the importance of the steroid ring system for neuroprotective activity, phenolic compounds having the cyclopent[b]anthracene, cyclopenta[b]phenanthrene, benz[f]indene, benz[e]indene, indenes linked to a phenol, and a phenolic spiro ring system were prepared. New synthetic methods were developed to make some of the cyclopent[b]anthracene analogues as well as the spiro ring system. Compounds were evaluated for their ability to protect HT-22 hippocampal neurons from glutamate neurotoxicity and their activity relative to a potent neuroprotective analogue of 17ß-estradiol was determined. An adamantyl substituent placed ortho to the phenolic hydroxyl group gave neuroprotective analogues in all ring systems studied.


Assuntos
Estrogênios/química , Estrogênios/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Linhagem Celular , Hipocampo/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Compostos de Espiro/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA