RESUMO
Didemnin B is a marine-derived depsipeptide with potent antiviral and anticancer activities. A prodrug activation mechanism was previously proposed for the biosynthesis of didemnin B by the nonribosomal peptide synthetase/polyketide synthase (NRPS/PKS) assembly line, but the enzyme involved in the maturation process remained unknown. Herein, we demonstrated that DidA, a dimodular NRPS predicted with unrelated activity to didemnin B structure assembly, was indispensable to produce didemnin B, confirming the prodrug mechanism in didemnin B biosynthesis. We further identified an Abi family transmembrane protease, DidK, that functioned as an esterase in the maturation step of didemnin B by in vivo gene knockout and heterologous expression. DidK is structurally distinct from other known hydrolytic enzymes involved in the maturation of bacterial nonribosomal peptides and is the first Abi family protein known to participate in NRPS/PKS-derived natural product production. Further bioinformatic analysis revealed more than 20 DidK homologues encoded in bacterial NRPS/PKS BGCs, suggesting that the involvement of Abi family proteins in natural product biosynthesis might not be rare. These results not only clarify the priming and maturation steps of didemnin B biosynthesis but also expand the function scope of Abi family proteins.
Assuntos
Produtos Biológicos , Depsipeptídeos , Pró-Fármacos , Depsipeptídeos/genética , Policetídeo Sintases/genética , Peptídeo Sintases/metabolismo , Bactérias/metabolismo , Família MultigênicaRESUMO
Chronic pain management poses a formidable challenge to healthcare, exacerbated by current analgesic options' limitations and adverse effects. Transient receptor potential vanilloid 1 (TRPV1), a non-selective cation channel, has emerged as a promising target for novel analgesics. However, safety and tolerability concerns have constrained the development of TRPV1 modulators. In this study, we explored marine-derived natural products as a source of potential TRPV1 modulators using high-throughput dye-uptake assays. We identified chrexanthomycins, a family of hexacyclic xanthones, exhibited potent TRPV1 inhibitory effects, with compounds cC and cF demonstrating the most significant activity. High-resolution patch-clamp assays confirmed the direct action of these compounds on the TRPV1 channel. Furthermore, in vivo assays revealed that cC and cF effectively suppressed capsaicin-induced pain sensation in mice, comparable to the known TRPV1 inhibitor, capsazepine. Structural-activity relationship analysis highlighted the importance of specific functional groups in modulating TRPV1 activity. Our findings underscore the therapeutic potential of chrexanthomycins and pave the way for further investigations into marine-derived TRPV1 modulators for pain management.
Assuntos
Antineoplásicos , Produtos Biológicos , Camundongos , Animais , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Capsaicina/farmacologia , Proteínas de Transporte , Canais de Cátion TRPV/fisiologiaRESUMO
The production of shale gas in China has repercussions for the global energy landscape and carbon neutrality. However, limited and threatened water resources may hinder the expansion of shale-derived natural gas, one of China's most promising development prospects. Coupling historical trends with policy guidance, we project that baseline water stress will intensify in two-thirds of China's provinces in the next decade. By 2035, annual water use for shale gas hydraulic fracturing activities is likely to increase to 16-35 million m3, with 13.8-23.7 million m3 of wastewater produced annually to extract 38-48 billion m3 of gas from â¼4800 shale gas wells. Analysis suggests that this projection is based on previously underestimated geological constraints (e.g., deep continental facies) in shale gas development in China. Nevertheless, forecasts suggest that the water footprint of shale development will become impossible to ignore, particularly in drought-stricken areas, indicating the potential risk of competition for water among shale development, domestic use, food production, and ecological protection. Meanwhile, the annual wastewater management market will increase to $0.2 billion by 2035. Our study suggests a critical need to direct attention to the (shale) energy-water nexus and develop multi-pronged policies to facilitate China's transition to carbon neutrality.
Assuntos
Gás Natural , Águas Residuárias , Carbono , Campos de Petróleo e Gás , China , MineraisRESUMO
BACKGROUND: Gut microbiota (GM) dysregulation, known as dysbiosis, has been proposed as a crucial driver of obesity associated with "Western" diet (WD) consumption. Gut dysbiosis is associated with increased gut permeability, inflammation, and insulin resistance. However, host metabolic pathways implicated in the pathophysiology of gut dysbiosis are still elusive. Exchange protein directly activated by cAMP (Epac) plays a critical role in cell-cell junction formation and insulin secretion. Here, we used homozygous Epac1-knockout (Epac1-/-), Epac2-knockout (Epac2-/-), and wild-type (WT) mice to investigate the role of Epac proteins in mediating gut dysbiosis, gut permeability, and inflammation after WD feeding. RESULTS: The 16S rRNA gene sequencing of fecal DNA showed that the baseline GM of Epac2-/-, but not Epac1-/-, mice was represented by a significantly higher Firmicutes to Bacteroidetes ratio and significant alterations in several taxa compared to WT mice, suggesting that Epac2-/- mice had gut dysbiosis under physiological conditions. However, an 8-week WD led to a similar gut microbiome imbalance in mice regardless of genotype. While Epac1 deficiency modestly exacerbated the WD-induced GM dysbiosis, the WD-fed Epac2-/- mice had a more significant increase in gut permeability than corresponding WT mice. After WD feeding, Epac1-/-, but not Epac2-/-, mice had significantly higher mRNA levels of tumor necrosis factor-alpha (TNF-α) and F4/80 in the epididymal white adipose tissue (EWAT), increased circulating lipocalin-2 protein and more severe glucose intolerance, suggesting greater inflammation and insulin resistance in WD-fed Epac1-/- mice than corresponding WT mice. Consistently, Epac1 protein expression was significantly reduced in the EWAT of WD-fed WT and Epac2-/- mice. CONCLUSION: Despite significantly dysregulated baseline GM and a more pronounced increase in gut permeability upon WD feeding, WD-fed Epac2-/- mice did not exhibit more severe inflammation and glucose intolerance than corresponding WT mice. These findings suggest that the role of gut dysbiosis in mediating WD-associated obesity may be context-dependent. On the contrary, we demonstrate that deficiency of host signaling protein, Epac1, drives inflammation and glucose intolerance which are the hallmarks of WD-induced obesity. Video abstract.
Assuntos
Intolerância à Glucose , Resistência à Insulina , Animais , Camundongos , Dieta Ocidental , Disbiose , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Inflamação , Camundongos Endogâmicos C57BL , Obesidade/etiologia , RNA Ribossômico 16S/genéticaRESUMO
Bacteria in marine biofilms are a rich reservoir of natural products. To facilitate novel secondary metabolite discovery, we investigated the metabolic profile of a marine biofilm-derived Bacillus sp. B19-2 by combining bioinformatics and LC-UV-MS analyses. After dereplication and purification of putatively unknown compounds, a new family of compounds 1-8 was uncovered and named bathiapeptides. Structural elucidation using NMR, HRESIMS, ozonolysis, advanced Marfey's analysis, and X-ray diffraction revealed that bathiapeptides are polypeptides that contain a rare polythiazole moiety. These compounds exhibited strong cytotoxicity against Hep G2, HeLa, MCF-7, and MGC-803 cell lines, and the lowest IC50 value was 0.5 µM. An iterative biosynthesis logic in bathiapeptides' biosynthesis was proposed based on the identified chemical structures and putative gene cluster analysis.
Assuntos
Bacillus , Produtos Biológicos , Bacillus/metabolismo , Biofilmes , Produtos Biológicos/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Peptídeos/metabolismoRESUMO
Covering: up to 2021Colibactin(s), a group of secondary metabolites produced by the pks island (clb cluster) of Escherichia coli, shows genotoxicity relevant to colorectal cancer and thus significantly affects human health. Over the last 15 years, substantial efforts have been exerted to reveal the molecular structure of colibactin, but progress is slow owing to its instability, low titer, and elusive and complex biosynthesis logic. Fortunately, benefiting from the discovery of the prodrug mechanism, over 40 precursors of colibactin have been reported. Some key biosynthesis genes located on the pks island have also been characterised. Using an integrated bioinformatics, metabolomics, and chemical synthesis approach, researchers have recently characterised the structure and possible biosynthesis processes of colibactin, thereby providing new insights into the unique biosynthesis logic and the underlying mechanism of the biological activity of colibactin. Early developments in the study of colibactin have been summarised in several previous reviews covering various study periods, whereas the two most recent reviews have focused primarily on the chemical synthesis of colibactin. The present review aims to provide an update on the biosynthesis and bioactivities of colibactin.
Assuntos
Mutagênicos , Policetídeos , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Mutagênicos/metabolismo , Peptídeos/química , Policetídeos/metabolismoRESUMO
Elasnin is a new antibiofilm compound that was recently reported to have excellent activity against methicillin-resistant Staphylococcus aureus (MRSA) biofilms. In this study, we established that elasnin also has antibacterial activity against growing S. aureus planktonic cells. To explore elasnin's potential as an antibiotic, we applied adaptive laboratory evolution (ALE) and produced evolved strains with elevated elasnin tolerance. Interestingly, they were more sensitive toward daptomycin and lysostaphin. Whole-genome sequencing revealed that all of the evolved strains possessed a single point mutation in a putative phosphate transport regulator. Subsequently, they exhibited increased intracellular phosphate (Pi) and polyphosphate levels. Inhibition of the phosphate transport regulator gene changed the phenotype of the wild type to one resembling those observed in the evolved strains. Proteomics and transcriptomics analyses showed that elasnin treatment resulted in the downregulation of many proteins related to cell division and cell wall synthesis, which is important for the survival of growing exponential-phase cells. Other downregulated processes and factors were fatty acid metabolism, glycolysis, the two-component system, RNA degradation, and ribosomal proteins. Most importantly, transport proteins and proteins involved in oxidative phosphorylation and the phosphotransferase system were more upregulated in the evolved strain than in the ancestral strain, indicating that they are important for elasnin tolerance. Overall, this study showed that elasnin has antibacterial activity against growing S. aureus cells and revealed the altered processes due to elasnin treatment and those associated with its tolerance. IMPORTANCE Besides the excellent antibiofilm properties of elasnin, we discovered that it can also kill growing methicillin-resistant Staphylococcus aureus (MRSA) planktonic cells. We subjected MRSA cells to an in vitro evolution experiment, and the resulting evolved strains exhibited increased elasnin tolerance, reduced growth rate, loss of pigmentation, and an increased proportion of small-colony formation, and they became more sensitive toward daptomycin and lysostaphin. Through multiomics analysis, we uncovered the affected processes in growing S. aureus planktonic cells following elasnin treatment, including the downregulation of cell wall synthesis, cell division, and some genes/proteins for the two-component system. These findings suggest that elasnin suppressed processes important for the cells' survival and adaptation to environmental stresses, making it an ideal drug adjuvant candidate. Overall, our study provides new insights into the mechanism of elasnin in S. aureus planktonic cells and pointed out the potential application of elasnin in clinics.
Assuntos
Daptomicina , Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus Resistente à Meticilina/genética , Daptomicina/metabolismo , Staphylococcus aureus/genética , Lisostafina/genética , Proteômica , Transcriptoma , Antibacterianos/metabolismoRESUMO
The crude extract of Streptomyces chrestomyceticus exhibited strong and broad activities against most "ESKAPE pathogens." We conducted a comprehensive chemical investigation for secondary metabolites from the S. chrestomyceticus strain and identified two novel albofungin (alb) derivatives, i.e., albofungins A (1) and B (2), along with two known compounds, i.e., albofungin (3) and chloroalbofungin (4). The chemical structures of the novel compounds were elucidated using HRMS, 1D and 2D NMR, and electronic circular dichroism spectroscopy. The draft genome of S. chrestomyceticus was sequenced, and a 72 kb albofungin (alb) gene cluster with 72 open reading frames encoding type II polyketide synthases (PKSs), regulators, and transporters, and tailoring enzymes were identified using bioinformatics analysis. The alb gene cluster was confirmed using the heterologous expression in Streptomyces coelicolor, which successfully produced the compounds 3 and 4. Furthermore, compounds 1-4 displayed remarkable activities against Gram-positive bacteria and antitumor activities toward various cancer cells. Notably, compounds 1 and 3 showed potent activities against Gram-negative pathogenic bacteria. The terminal deoxynucleotidyl transferase (dUTP) nick-end labeling and flow cytometry analysis verified that compound 1 inhibited cancer cell proliferation by inducing cellular apoptosis. These results indicated that albofungins might be potential candidates for the development of antibiotics and antitumor drugs.
RESUMO
Whole genome duplication (WGD) has occurred in relatively few sexually reproducing invertebrates. Consequently, the WGD that occurred in the common ancestor of horseshoe crabs ~135 million years ago provides a rare opportunity to decipher the evolutionary consequences of a duplicated invertebrate genome. Here, we present a high-quality genome assembly for the mangrove horseshoe crab Carcinoscorpius rotundicauda (1.7 Gb, N50 = 90.2 Mb, with 89.8% sequences anchored to 16 pseudomolecules, 2n = 32), and a resequenced genome of the tri-spine horseshoe crab Tachypleus tridentatus (1.7 Gb, N50 = 109.7 Mb). Analyses of gene families, microRNAs, and synteny show that horseshoe crabs have undergone three rounds (3R) of WGD. Comparison of C. rotundicauda and T. tridentatus genomes from populations from several geographic locations further elucidates the diverse fates of both coding and noncoding genes. Together, the present study represents a cornerstone for improving our understanding of invertebrate WGD events on the evolutionary fates of genes and microRNAs, at both the individual and population level. We also provide improved genomic resources for horseshoe crabs, of applied value for breeding programs and conservation of this fascinating and unusual invertebrate lineage.
Assuntos
Duplicação Gênica/genética , Caranguejos Ferradura/genética , MicroRNAs/genética , Animais , Evolução Molecular , Genoma/genética , Genômica , FilogeniaRESUMO
d-Stereoselective peptidases that degrade nonribosomal peptides (NRPs) were recently discovered and could have serious implications for the future of NRPs as antibiotics. Herein, we report chemical modifications that can be used to impart resistance to the d-peptidases BogQ and TriF. New tridecaptin A analogues were synthesized that retain strong antimicrobial activity and have significantly enhanced d-peptidase stability. In vitro assays confirmed that synthetic analogues retain the ability to bind to their cellular receptor, peptidoglycan intermediate lipid II.
Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Peptídeo Hidrolases/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Antibacterianos/metabolismo , Cisteína/química , Estabilidade Enzimática , Escherichia coli/efeitos dos fármacos , Hidrólise , Testes de Sensibilidade Microbiana , Peptídeo Hidrolases/química , Peptídeos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurâmico/metabolismoRESUMO
Colibactin is an assumed human gut bacterial genotoxin, whose biosynthesis is linked to the clb genomic island that has a widespread distribution in pathogenic and commensal human enterobacteria. Colibactin-producing gut microbes promote colon tumour formation and enhance the progression of colorectal cancer via cellular senescence and death induced by DNA double-strand breaks (DSBs); however, the chemical basis that contributes to the pathogenesis at the molecular level has not been fully characterized. Here, we report the discovery of colibactin-645, a macrocyclic colibactin metabolite that recapitulates the previously assumed genotoxicity and cytotoxicity. Colibactin-645 shows strong DNA DSB activity in vitro and in human cell cultures via a unique copper-mediated oxidative mechanism. We also delineate a complete biosynthetic model for colibactin-645, which highlights a unique fate of the aminomalonate-building monomer in forming the C-terminal 5-hydroxy-4-oxazolecarboxylic acid moiety through the activities of both the polyketide synthase ClbO and the amidase ClbL. This work thus provides a molecular basis for colibactin's DNA DSB activity and facilitates further mechanistic study of colibactin-related colorectal cancer incidence and prevention.
Assuntos
Cobre/farmacologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Compostos Macrocíclicos/farmacologia , Peptídeos/farmacologia , Policetídeos/farmacologia , Cobre/química , Compostos Macrocíclicos/química , Conformação Molecular , Estresse Oxidativo/efeitos dos fármacos , Peptídeos/química , Policetídeos/químicaRESUMO
Four peptide antibiotics, named paenialvin A-D, were isolated from Paenibacillus alvei DSM 29. Mass spectrum analysis determined the molecular masses of paenialvin A-D to be 1891, 1875, 1877, and 1923 Da, respectively. Tandem mass spectra and nuclear magnetic resonance (NMR) were used to elucidate their chemical structures. Paenialvin A-D showed antimicrobial activity against most strains that were tested, including methicillin-resistant Staphalococcus aureus, Staphylococcus aureus, Bacillus subtilis, Loktanella hongkongensis, Escherichia coli, and Pseudomonas aeruginosa. In particular, the minimum inhibitory concentration of paenialvins against Staphalococcus aureus reached 0.8-3.2 µg/mL. Although they were cytotoxic against HeLa cells at a concentration of 50 µg/mL, the lack of hemolysis by paenialvins confirmed that they are potential candidates for anti-tumor drugs.
Assuntos
Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Paenibacillus/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Rhodobacteraceae/efeitos dos fármacos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Farmacorresistência Bacteriana Múltipla , Células HeLa , Humanos , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Ressonância Magnética Nuclear BiomolecularRESUMO
Nonribosomal peptide antibiotics, including polymyxin, vancomycin, and teixobactin, most of which contain D-amino acids, are highly effective against multidrug-resistant bacteria. However, overusing antibiotics while ignoring the risk of resistance arising has inexorably led to widespread emergence of resistant bacteria. Therefore, elucidation of the emerging mechanisms of resistance to nonribosomal peptide antibiotics is critical to their implementation. Here we describe a networking-associated genome-mining platform for linking biosynthetic building blocks to resistance components associated with biosynthetic gene clusters. By applying this approach to 5,585 complete bacterial genomes spanning the entire domain of bacteria, with subsequent chemical and enzymatic analyses, we demonstrate a mechanism of resistance toward nonribosomal peptide antibiotics that is based on hydrolytic cleavage by D-stereospecific peptidases. Our finding reveals both the widespread distribution and broad-spectrum resistance potential of D-stereospecific peptidases, providing a potential early indicator of antibiotic resistance to nonribosomal peptide antibiotics.
Assuntos
Antibacterianos/química , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Peptídeo Hidrolases/química , Peptídeos/química , Peptídeos Catiônicos Antimicrobianos , Bactérias/genética , Biologia Computacional , Farmacorresistência Bacteriana , Genoma Bacteriano , Hidrólise , Cinética , Família Multigênica , Mutação , Ligação Proteica , Ribossomos/química , EstereoisomerismoRESUMO
To determine how environmental pollutants induce dysbiosis of the gut microbiota, we exposed adult zebrafish to model pollutants with varied modes of action (atrazine, estradiol, polychlorinated biphenyl [PCB]126, and PCB153) for 7 days. Subsequently, metagenomic sequencing of the intestines was performed to compare the gut microbiomes among the groups. We observed clear compound- and sex-specific responses to xenobiotic stress. Principal component analysis revealed involvement of the aryl hydrocarbon receptor (AhR) and, to a lesser extent, the estrogen receptor (ER) in the dysregulation of the intestinal microbiota. The model pollutants differentially impaired intestinal and hepatic physiological activities, as indicated by assessments of gut motility, epithelial permeability, inflammation, and oxidative stress. Correlation analysis showed that abnormal Aeromonas reproduction, especially in the PCB126 groups, was significantly positively associated with oxidative damage. Aeromonas closely interacted with Mannheimia and Blastococcus to regulate intestinal permeability. In summary, we demonstrated that ER and AhR signaling regulated the dynamics of the gut microbiota. Our findings provide new mechanistic insight into the complex interactions between the host metabolism and gut microbiota, which may contribute to the grouped assessment of environmental pollutants in future.
Assuntos
Poluentes Ambientais , Microbioma Gastrointestinal , Bifenilos Policlorados , Animais , Feminino , Intestinos , Masculino , Receptores de Hidrocarboneto Arílico , Receptores de EstrogênioRESUMO
Iron sequestration by host proteins contributes to the defence against bacterial pathogens, which need iron for their metabolism and virulence. A Pseudomonas aeruginosa mutant lacking all three known iron acquisition systems retains the ability to grow in media containing iron chelators, suggesting the presence of additional pathways involved in iron uptake. Here we screen P. aeruginosa mutants defective in growth in iron-depleted media and find that gene PA2374, proximal to the type VI secretion system H3 (H3-T6SS), functions synergistically with known iron acquisition systems. PA2374 (which we have renamed TseF) appears to be secreted by H3-T6SS and is incorporated into outer membrane vesicles (OMVs) by directly interacting with the iron-binding Pseudomonas quinolone signal (PQS), a cell-cell signalling compound. TseF facilitates the delivery of OMV-associated iron to bacterial cells by engaging the Fe(III)-pyochelin receptor FptA and the porin OprF. Our results reveal links between type VI secretion, cell-cell signalling and classic siderophore receptors for iron acquisition in P. aeruginosa.
Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Membrana Celular/metabolismo , Ferro/metabolismo , Pseudomonas aeruginosa/metabolismo , Quinolonas/metabolismo , Vesículas Transportadoras/metabolismo , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/química , Modelos Biológicos , Mutação/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Receptores de Superfície Celular/metabolismo , Especificidade por SubstratoRESUMO
3,3'-Diindolylmethane (DIM) has been promoted as an effective chemopreventive and antifouling additive. However, the concurrent risks or side effects of DIM are not fully understood, especially on tissues responsive to estrogen. Therefore, this study employed marine medaka (Oryzias melastigma) as a test model to evaluate relative safety and explore mechanisms of toxic action of DIM on development and function of gonad after chronic (28days) aqueous exposure to relatively low doses (0µg/L or 8.5µg/L). Integration of comprehensive toxicogenomic analysis at the transcriptome and proteome levels with apical endpoints, such as production of eggs and swimming performance of larvae, elucidated the molecular linkage in gonad from bottom up along the reproductive adverse outcome pathway. A series of sequential changes at the transcript and protein levels were linked to lesser fecundity and viability of larvae exposed to DIM. Anomalous production of vitellogenin (VTG) and eggshell proteins in testis confirmed the estrogenic potency of DIM. In the ovary, although storage of VTG was greater, lesser expressions of cathepsin enzymes blocked cleavage and incorporation of VTG into oocytes as yolk, which acted together with lower eggshell proteins to inhibit maturation of primary oocyte and thus contributed to impairment of fecundity. Overall, this study demonstrated that exposure to DIM impaired reproductive fitness. Diverse molecular initiating changes in gonads were linked to apical endpoints that could be used in assessment of risks posed by DIM on gametogenesis. In combination with chemical stability and potent endocrine disruption, the results of this study can inform decisions about the use of DIM either as chemopreventive or antifouling agent.
Assuntos
Anticarcinógenos/toxicidade , Desinfetantes/toxicidade , Disruptores Endócrinos/toxicidade , Indóis/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Proteínas do Ovo/metabolismo , Feminino , Fertilidade/efeitos dos fármacos , Proteínas de Peixes/metabolismo , Larva/efeitos dos fármacos , Larva/fisiologia , Masculino , Oryzias/fisiologia , Ovário/efeitos dos fármacos , Ovário/metabolismo , Reprodução/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Vitelogeninas/metabolismoRESUMO
Colibactin is an as-yet-uncharacterized genotoxic secondary metabolite produced by human gut bacteria. Here we report the biosynthetic discovery of two new precolibactin molecules from Escherichia coli, including precolibactin-886, which uniquely incorporates the highly sought genotoxicity-associated aminomalonate building block into its unprecedented macrocyclic structure. This work provides new insights into the biosynthetic logic and mode of action of this colorectal-cancer-linked microbial chemical.
Assuntos
Malonatos/metabolismo , Peptídeos/metabolismo , Policetídeos/metabolismo , Escherichia coli/metabolismo , Humanos , Malonatos/química , Conformação Molecular , Peptídeos/química , Policetídeos/químicaRESUMO
The bryozoan Bugula neritina has a biphasic life cycle that consists of a planktonic larval stage and a sessile juvenile/adult stage. The transition between these two stages is crucial for the development and recruitment of B. neritina. Metamorphosis in B. neritina is mediated by both the nervous system and the release of developmental signals. However, no research has been conducted to investigate the expression of neuropeptides (NP)/peptide hormones in B. neritina larvae. Here, we report a comprehensive study of the NP/peptide hormones in the marine bryozoan B. neritina based on in silico identification methods. We recovered 22 transcripts encompassing 11 NP/peptide hormone precursor transcript sequences. The transcript sequences of the 11 isolated NP precursors were validated by cDNA cloning using gene-specific primers. We also examined the expression of three peptide hormone precursor transcripts (BnFDSIG, BnILP1, BnGPB) in the coronate larvae of B. neritina, demonstrating their distinct expression patterns in the larvae. Overall, our findings serve as an important foundation for subsequent investigations of the peptidergic control of bryozoan larval behavior and settlement.
Assuntos
Briozoários/genética , Hormônios de Invertebrado/genética , Neuropeptídeos/genética , Hormônios Peptídicos/genética , Animais , Briozoários/fisiologia , Simulação por Computador , Hibridização In Situ , Hormônios de Invertebrado/fisiologia , Larva , Neuropeptídeos/fisiologia , Hormônios Peptídicos/fisiologia , Análise de Sequência de DNA , Transcriptoma/genéticaRESUMO
PBDEs and heavy metals are two major contaminants at e-waste disposal sites, but their combined effects remain largely unexplored. In the present study, the transcriptomic profiles of zebrafish larvae were examined after acute exposure of embryos to 200 µg/L BDE-209, 20 µg/L lead (Pb) or their mixture (Mix). Stimulation of steroidogenic pathway and vitellogenesis in the BDE-209 and Mix treatments indicated the estrogenic activities of BDE-209, while Pb antagonized those estrogenic effects in the Mix treatment. Increased heart rates were observed in zebrafish exposed to the Pb and Mix treatments. The cardiac dysfunction probably resulted from the promotion of angiogenesis, increased adrenergic drive and induction of the formation of blood clot. Furthermore, the Pb and Mix treatments activated neuroendocrine regulation of the pituitary in a positive feedback loop, via the thyrotropin-releasing hormone receptor, thus increasing thyroid hormone production self-adaptively. Overall, the interaction between BDE-209 and Pb led to synergistic and antagonistic effects on gene transcriptions, with concerted contribution from their individual toxicological properties.