Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Zhejiang Univ Sci B ; 21(10): 811-822, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33043646

RESUMO

Pepino mosaic virus (PepMV) causes severe disease in tomato and other Solanaceous crops around globe. To effectively study and manage this viral disease, researchers need new, sensitive, and high-throughput approaches for viral detection. In this study, we purified PepMV particles from the infected Nicotiana benthamiana plants and used virions to immunize BALB/c mice to prepare hybridomas secreting anti-PepMV monoclonal antibodies (mAbs). A panel of highly specific and sensitive murine mAbs (15B2, 8H6, 23D11, 20D9, 3A6, and 8E3) could be produced through cell fusion, antibody selection, and cell cloning. Using the mAbs as the detection antibodies, we established double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), Dot-ELISA, and Tissue print-ELISA for detecting PepMV infection in tomato plants. Resulting data on sensitivity analysis assays showed that both DAS-ELISA and Dot-ELISA can efficiently monitor the virus in PepMV-infected tissue crude extracts when diluted at 1:1 310 720 and 1:20 480 (weight/volume ratio (w/v), g/mL), respectively. Among the three methods developed, the Tissue print-ELISA was found to be the most practical detection technique. Survey results from field samples by the established serological approaches were verified by reverse transcription polymerase chain reaction (RT-PCR) and DNA sequencing, demonstrating all three serological methods are reliable and effective for monitoring PepMV. Anti-PepMV mAbs and the newly developed DAS-ELISA, Dot-ELISA, and Tissue print-ELISA can benefit PepMV detection and field epidemiological study, and management of this viral disease, which is already widespread in tomato plants in Yunnan Province of China.


Assuntos
Potexvirus/metabolismo , Solanum lycopersicum/virologia , Animais , Anticorpos Monoclonais/imunologia , China , Clonagem Molecular , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Hibridomas , Camundongos , Camundongos Endogâmicos BALB C , Doenças das Plantas/virologia , Sensibilidade e Especificidade , Nicotiana
2.
J Zhejiang Univ Sci B ; 11(2): 109-14, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20104645

RESUMO

Papaya leaf curl China virus (PaLCuCNV) was previously reported as a distinct begomovirus infecting papaya in southern China. Based on molecular diagnostic survey, 13 PaLCuCNV isolates were obtained from tomato plants showing leaf curl symptoms in Henan and Guangxi Provinces of China. Complete nucleotide sequences of 5 representative isolates (AJ558116, AJ558117, AJ704604, FN256260, and FN297834) were determined to be 2738-2751 nucleotides, which share 91.7%-97.9% sequence identities with PaLCuCNV isolate G2 (AJ558123). DNA-beta was not found to be associated with PaLCuCNV isolates. To investigate the infectivity of PaLCuCNV, an infectious clone of PaLCuCNV-[CN:HeNZM1] was constructed and agro-inoculated into Nicotiana benthamiana, N. tabacum Samsun, N. glutinosa, Solanum lycopersicum and Petunia hybrida plants, which induced severe leaf curling and crinkling symptoms in these plants. Southern blot analysis and polymerase chain reaction (PCR) indicated a systemic infection of test plants by the agro-infectious clone.


Assuntos
Begomovirus/genética , Begomovirus/patogenicidade , Carica/virologia , Solanum lycopersicum/virologia , Sequência de Bases , Begomovirus/classificação , Begomovirus/isolamento & purificação , China , Primers do DNA/genética , DNA Viral/genética , Petunia/virologia , Filogenia , Doenças das Plantas/virologia , Folhas de Planta/virologia , Nicotiana/virologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA