Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 374
Filtrar
1.
J Neuroinflammation ; 21(1): 161, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915059

RESUMO

BACKGROUND: Pediatric acute transverse myelitis (ATM) accounts for 20-30% of children presenting with a first acquired demyelinating syndrome (ADS) and may be the first clinical presentation of a relapsing ADS such as multiple sclerosis (MS). B cells have been strongly implicated in the pathogenesis of adult MS. However, little is known about B cells in pediatric MS, and even less so in pediatric ATM. Our lab previously showed that plasmablasts (PB), the earliest B cell subtype producing antibody, are expanded in adult ATM, and that these PBs produce self-reactive antibodies that target neurons. The goal of this study was to examine PB frequency and phenotype, immunoglobulin selection, and B cell receptor reactivity in pediatric patients presenting with ATM to gain insight to B cell involvement in disease. METHODS: We compared the PB frequency and phenotype of 5 pediatric ATM patients and 10 pediatric healthy controls (HC) and compared them to previously reported adult ATM patients using cytometric data. We purified bulk IgG from the plasma samples and cloned 20 recombinant human antibodies (rhAbs) from individual PBs isolated from the blood. Plasma-derived IgG and rhAb autoreactivity was measured by mean fluorescence intensity (MFI) in neurons and astrocytes of murine brain or spinal cord and primary human astrocytes. We determined the potential impact of these rhAbs on astrocyte health by measuring stress and apoptotic response. RESULTS: We found that pediatric ATM patients had a reduced frequency of peripheral blood PB. Serum IgG autoreactivity to neurons in EAE spinal cord was similar in the pediatric ATM patients and HC. However, serum IgG autoreactivity to astrocytes in EAE spinal cord was reduced in pediatric ATM patients compared to pediatric HC. Astrocyte-binding strength of rhAbs cloned from PBs was dependent on somatic hypermutation accumulation in the pediatric ATM cohort, but not HC. A similar observation in predilection for astrocyte binding over neuron binding of individual antibodies cloned from PBs was made in EAE brain tissue. Finally, exposure of human primary astrocytes to these astrocyte-binding antibodies increased astrocytic stress but did not lead to apoptosis. CONCLUSIONS: Discordance in humoral immune responses to astrocytes may distinguish pediatric ATM from HC.


Assuntos
Astrócitos , Mielite Transversa , Humanos , Mielite Transversa/imunologia , Animais , Feminino , Astrócitos/metabolismo , Astrócitos/imunologia , Criança , Camundongos , Masculino , Adolescente , Plasmócitos/imunologia , Plasmócitos/metabolismo , Autoanticorpos/imunologia , Autoanticorpos/sangue , Camundongos Endogâmicos C57BL , Células Cultivadas , Pré-Escolar , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Medula Espinal/metabolismo , Medula Espinal/imunologia , Medula Espinal/patologia
2.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189137, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38880161

RESUMO

Cancer is a profoundly dynamic, heterogeneous and aggressive systemic ailment, with a coordinated evolution of various types of tumor niches. Hypoxia plays an indispensable role in the tumor micro-ecosystem, drastically enhancing the plasticity of cancer cells, fibroblasts and immune cells and orchestrating intercellular communication. Hypoxia-induced signals, particularly hypoxia-inducible factor-1α (HIF-1α), drive the reprogramming of genetic, transcriptional, and proteomic profiles. This leads to a spectrum of interconnected processes, including augmented survival of cancer cells, evasion of immune surveillance, metabolic reprogramming, remodeling of the extracellular matrix, and the development of resistance to conventional therapeutic modalities like radiotherapy and chemotherapy. Here, we summarize the latest research on the multifaceted effects of hypoxia, where a multitude of cellular and non-cellular elements crosstalk with each other and co-evolve in a synergistic manner. Additionally, we investigate therapeutic approaches targeting hypoxic niche, encompassing hypoxia-activated prodrugs, HIF inhibitors, nanomedicines, and combination therapies. Finally, we discuss some of the issues to be addressed and highlight the potential of emerging technologies in the treatment of cancer.

3.
Mol Cancer ; 23(1): 128, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890620

RESUMO

BACKGROUND: Circular RNAs (circRNAs) play important roles in cancer progression and metastasis. However, the expression profiles and biological roles of circRNAs in non-small cell lung cancer (NSCLC) remain unclear. METHODS: In this study, we identified a novel circRNA, hsa_circ_0006834 (termed circ6834), in NSCLC by RNA-seq and investigated the biological role of circ6834 in NSCLC progression in vitro and in vivo. Finally, the molecular mechanism of circ6834 was revealed by tagged RNA affinity purification (TRAP), western blot, RNA immunoprecipitation, dual luciferase reporter gene assays and rescue experiments. RESULTS: Our results showed that circ6834 was downregulated in NSCLC tumor tissues and cell lines. Circ6834 overexpression inhibited NSCLC cell growth and metastasis both in vitro and in vivo, while circ6834 knockdown had the opposite effect. We found that TGF-ß treatment decreased circ6834 expression, which was associated with the QKI reduction in NSCLC cells and circ6834 antagonized TGF-ß-induced EMT and metastasis in NSCLC cells. Mechanistically, circ6834 bound to AHNAK protein, a key regulator of TGF-ß/Smad signaling, and inhibited its stability by enhancing TRIM25-mediated ubiquitination and degradation. In addition, circ6834 acted as a miRNA sponge for miR-873-5p and upregulated TXNIP gene expression, which together inactivated the TGF-ß/Smad signaling pathway in NSCLC cells. CONCLUSION: In conclusion, circ6834 is a tumor-suppressive circRNA that inhibits NSCLC progression by forming a negative regulatory feedback loop with the TGF-ß/Smad signaling pathway and represents a novel therapeutic target for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proteínas de Transporte , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , MicroRNAs , RNA Circular , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , RNA Circular/genética , MicroRNAs/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Progressão da Doença , Movimento Celular/genética , Transdução de Sinais , Feminino , Fator de Crescimento Transformador beta/metabolismo , Masculino , Transição Epitelial-Mesenquimal/genética
4.
Biomaterials ; 309: 122613, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38759485

RESUMO

Vascular restenosis following angioplasty continues to pose a significant challenge. The heterocyclic trioxirane compound [1, 3, 5-tris((oxiran-2-yl)methyl)-1, 3, 5-triazinane-2, 4, 6-trione (TGIC)], known for its anticancer activity, was utilized as the parent ring to conjugate with a non-steroidal anti-inflammatory drug, resulting in the creation of the spliced conjugated compound BY1. We found that BY1 induced ferroptosis in VSMCs as well as in neointima hyperplasia. Furthermore, ferroptosis inducers amplified BY1-induced cell death, while inhibitors mitigated it, indicating the contribution of ferroptosis to BY1-induced cell death. Additionally, we established that ferritin heavy chain1 (FTH1) played a pivotal role in BY1-induced ferroptosis, as evidenced by the fact that FTH1 overexpression abrogated BY1-induced ferroptosis, while FTH1 knockdown exacerbated it. Further study found that BY1 induced ferroptosis by enhancing the NCOA4-FTH1 interaction and increasing the amount of intracellular ferrous. We compared the effectiveness of various administration routes for BY1, including BY1-coated balloons, hydrogel-based BY1 delivery, and nanoparticles targeting OPN loaded with BY1 (TOP@MPDA@BY1) for targeting proliferated VSMCs, for prevention and treatment of the restenosis. Our results indicated that TOP@MPDA@BY1 was the most effective among the three administration routes, positioning BY1 as a highly promising candidate for the development of drug-eluting stents or treatments for restenosis.


Assuntos
Ferroptose , Músculo Liso Vascular , Nanopartículas , Ferroptose/efeitos dos fármacos , Animais , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Humanos , Nanopartículas/química , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredutases/metabolismo , Ferritinas
5.
Biomacromolecules ; 25(6): 3373-3383, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38713187

RESUMO

The control over secondary structure has been widely studied to regulate the properties of polypeptide materials, which is used to change their functions in situ for various biomedical applications. Herein, we designed and constructed enzyme-responsive polypeptides as gating materials for mesoporous silica nanoparticles (MSNs), which underwent a distorted structure-to-helix transition to promote the release of encapsulated drugs. The polypeptide conjugated on the MSN surface adopted a negatively charged, distorted, flexible conformation, covering the pores of MSN to prevent drug leakage. Upon triggering by alkaline phosphatase (ALP) overproduced by tumor cells, the polypeptide transformed into positively charged, α-helical, rigid conformation with potent membrane-penetrating capabilities, which protruded from the MSN surface to uncover the pores. Such a transition thus enabled cancer-selective drug release and cellular internalization to efficiently kill tumor cells. This study highlights the important role of chain flexibility in modulating the biological function of polypeptides and provides a new application paradigm for synthetic polypeptides with secondary-structure transition.


Assuntos
Liberação Controlada de Fármacos , Nanopartículas , Peptídeos , Dióxido de Silício , Humanos , Peptídeos/química , Nanopartículas/química , Dióxido de Silício/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/química , Preparações de Ação Retardada/química , Porosidade , Antineoplásicos/química , Antineoplásicos/farmacologia , Estrutura Secundária de Proteína
6.
World J Gastrointest Oncol ; 16(5): 2219-2224, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38764824

RESUMO

BACKGROUND: According to the latest report, colorectal cancer is still one of the most prevalent cancers, with the third highest incidence and mortality worldwide. Treatment of advanced rectal cancer with distant metastases is usually unsatisfactory, especially for mismatch repair proficient (pMMR) rectal cancer, which leads to poor prognosis and recurrence. CASE SUMMARY: We report a case of a pMMR rectal adenocarcinoma with metastases of multiple lymph nodes, including the left supraclavicular lymph node, before treatment in a 70-year-old man. He received full courses of chemoradiotherapy (CRT) followed by 4 cycles of programmed death 1 inhibitor Tislelizumab, and a pathologic complete response (pCR) was achieved, and the lesion of the left supraclavicular lymph node also disappeared. CONCLUSION: pMMR advanced rectal cancer with preserved intact distant metastatic lymph nodes may benefit from full-course CRT combined with immunotherapy.

7.
Front Immunol ; 15: 1382449, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745657

RESUMO

Background: Acute Respiratory Distress Syndrome (ARDS) or its earlier stage Acute lung injury (ALI), is a worldwide health concern that jeopardizes human well-being. Currently, the treatment strategies to mitigate the incidence and mortality of ARDS are severely restricted. This limitation can be attributed, at least in part, to the substantial variations in immunity observed in individuals with this syndrome. Methods: Bulk and single cell RNA sequencing from ALI mice and single cell RNA sequencing from ARDS patients were analyzed. We utilized the Seurat program package in R and cellmarker 2.0 to cluster and annotate the data. The differential, enrichment, protein interaction, and cell-cell communication analysis were conducted. Results: The mice with ALI caused by pulmonary and extrapulmonary factors demonstrated differential expression including Clec4e, Retnlg, S100a9, Coro1a, and Lars2. We have determined that inflammatory factors have a greater significance in extrapulmonary ALI, while multiple pathways collaborate in the development of pulmonary ALI. Clustering analysis revealed significant heterogeneity in the relative abundance of immune cells in different ALI models. The autocrine action of neutrophils plays a crucial role in pulmonary ALI. Additionally, there was a significant increase in signaling intensity between B cells and M1 macrophages, NKT cells and M1 macrophages in extrapulmonary ALI. The CXCL, CSF3 and MIF, TGFß signaling pathways play a vital role in pulmonary and extrapulmonary ALI, respectively. Moreover, the analysis of human single-cell revealed DCs signaling to monocytes and neutrophils in COVID-19-associated ARDS is stronger compared to sepsis-related ARDS. In sepsis-related ARDS, CD8+ T and Th cells exhibit more prominent signaling to B-cell nucleated DCs. Meanwhile, both MIF and CXCL signaling pathways are specific to sepsis-related ARDS. Conclusion: This study has identified specific gene signatures and signaling pathways in animal models and human samples that facilitate the interaction between immune cells, which could be targeted therapeutically in ARDS patients of various etiologies.


Assuntos
Lesão Pulmonar Aguda , Comunicação Celular , Perfilação da Expressão Gênica , Animais , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/imunologia , Camundongos , Humanos , Comunicação Celular/imunologia , Transcriptoma , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/genética , Modelos Animais de Doenças , Análise de Célula Única , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Neutrófilos/metabolismo , COVID-19/imunologia , COVID-19/genética , Transdução de Sinais , Masculino , Macrófagos/imunologia , Macrófagos/metabolismo
8.
Clin Nutr ; 43(6): 1544-1550, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754306

RESUMO

Few prospective studies have investigated the joint effect of lifestyle factors and genetic susceptibility on the risk of irritable bowel syndrome (IBS). This study aims to evaluate the associations of lifestyle and genetic factors with incident IBS in the UK Biobank. We analyzed data from 481,057 participants (54% female) without prevalent IBS at enrollment in the UK Biobank. An overall healthy lifestyle was defined using six modifiable lifestyle factors, including smoking, body mass index (BMI), sleep duration, diet, physical activity, and alcohol consumption, and hence categorized into 'favorable', 'intermediate', and 'unfavorable' lifestyles. A Cox proportional hazard model was used to investigate the association between a healthy lifestyle and incident IBS. Furthermore, we constructed a polygenic risk score (PRS) for IBS and assessed whether lifestyle modified the effect of genetics on the development of IBS. During a median follow-up of 12.1 years, 8645 incident IBS were ascertained. Specifically, among the six modifiable lifestyle factors, adequate sleep demonstrates the greatest protective effect (hazard ratio [HR]: 0.72, 95% CI: 0.69,0.75) against IBS. Compared with a favorable lifestyle, an unfavorable lifestyle was associated with a 56% (95% CI: 46%-67%) increased risk of IBS (P = 8.99 × 10-40). The risk of incident IBS was 12% (95% CI: 4%-21%) higher among those at high genetic risk compared with those at low genetic risk (P = 0.005). When considering the joint effect of lifestyle and genetic susceptibility, the HR nearly doubled among individuals with high genetic risk and unfavorable lifestyle (HR: 1.80; 95% CI:1.51-2.15; P = 3.50 × 10-11) compared to those with low genetic risk and favorable lifestyle. No multiplicative or addictive interaction was observed between lifestyle and genetics. The findings from this study indicated that lifestyle and genetic factors were independently associated with the risk of incident IBS. All these results implicated a possible clinical strategy of lowering the incidence of IBS by advocating a healthy lifestyle.


Assuntos
Predisposição Genética para Doença , Síndrome do Intestino Irritável , Estilo de Vida , Humanos , Síndrome do Intestino Irritável/genética , Síndrome do Intestino Irritável/epidemiologia , Feminino , Masculino , Estudos Prospectivos , Pessoa de Meia-Idade , Incidência , Reino Unido/epidemiologia , Fatores de Risco , Adulto , Modelos de Riscos Proporcionais , Idoso , Sono/genética , Estilo de Vida Saudável , Dieta/estatística & dados numéricos
9.
BMC Med Imaging ; 24(1): 108, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745134

RESUMO

BACKGROUND: The purpose of this research is to study the sonographic and clinicopathologic characteristics that associate with axillary lymph node metastasis (ALNM) for pure mucinous carcinoma of breast (PMBC). METHODS: A total of 176 patients diagnosed as PMBC after surgery were included. According to the status of axillary lymph nodes, all patients were classified into ALNM group (n = 15) and non-ALNM group (n = 161). The clinical factors (patient age, tumor size, location), molecular biomarkers (ER, PR, HER2 and Ki-67) and sonographic features (shape, orientation, margin, echo pattern, posterior acoustic pattern and vascularity) between two groups were analyzed to unclose the clinicopathologic and ultrasonographic characteristics in PMBC with ALNM. RESULTS: The incidence of axillary lymph node metastasis was 8.5% in this study. Tumors located in the outer side of the breast (upper outer quadrant and lower outer quadrant) were more likely to have lymphatic metastasis, and the difference between the two group was significantly (86.7% vs. 60.3%, P = 0.043). ALNM not associated with age (P = 0.437). Although tumor size not associated with ALNM(P = 0.418), the tumor size in ALNM group (32.3 ± 32.7 mm) was bigger than non-ALNM group (25.2 ± 12.8 mm). All the tumors expressed progesterone receptor (PR) positively, and 90% of all expressed estrogen receptor (ER) positively, human epidermal growth factor receptor 2 (HER2) were positive in two cases of non-ALNM group. Ki-67 high expression was observed in 36 tumors in our study (20.5%), and it was higher in ALNM group than non-ALNM group (33.3% vs. 19.3%), but the difference wasn't significantly (P = 0.338). CONCLUSIONS: Tumor location is a significant factor for ALNM in PMBC. Outer side location is more easily for ALNM. With the bigger size and/or Ki-67 higher expression status, the lymphatic metastasis seems more likely to present.


Assuntos
Adenocarcinoma Mucinoso , Axila , Neoplasias da Mama , Linfonodos , Metástase Linfática , Humanos , Feminino , Metástase Linfática/diagnóstico por imagem , Metástase Linfática/patologia , Pessoa de Meia-Idade , Neoplasias da Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Adulto , Idoso , Adenocarcinoma Mucinoso/diagnóstico por imagem , Adenocarcinoma Mucinoso/patologia , Adenocarcinoma Mucinoso/metabolismo , Adenocarcinoma Mucinoso/secundário , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Ultrassonografia/métodos , Biomarcadores Tumorais/metabolismo
10.
Mol Divers ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762686

RESUMO

Monomethyl auristatin F (MMAF), a synthetic analogue of the natural compound dolastatin 10, has garnered significant attention in cancer research due to its high potency in vitro. While previous studies have focused on modifying the N-terminal extension of the amino group and the C-terminal modification of the carboxyl group, there has been limited exploration into modifying the P1 and P5 side chains. In this study, we substituted the valine residue at the P1 position with various natural or unnatural amino acids and introduced triazole functional groups at the P5 side chain. Compounds 11k and 18d exhibited excellent inhibition on tubulin. Additionally, compound 18d demonstrated enhanced cytotoxicity against HCT116 cells compared to the parent compound MMAF, suggesting its potential as a cytotoxic payload for further antibody-drug conjugates (ADCs) development.

11.
PLoS One ; 19(5): e0299522, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38696452

RESUMO

Hepatocellular carcinoma (HCC) is the most common primary liver cancer worldwide and no pharmacological treatment is available that can achieve complete remission of HCC. Phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) is a recently identified HCC tumor suppressor gene which plays an important role in the development of HCC and its inactivation and reactivation has been shown to result in respectively HCC tumorigenesis and suppression. Small activating RNAs (saRNAs) have been used to achieve targeted activation of therapeutic genes for the restoration of their encoded protein through the RNAa mechanism. Here we designed and validated saRNAs that could activate LHPP expression at both the mRNA and protein levels in HCC cells. Activation of LHPP by its saRNAs led to the suppression of HCC proliferation, migration and the inhibition of Akt phosphorylation. When combined with targeted anticancer drugs (e.g., regorafenib), LHPP saRNA exhibited synergistic effect in inhibiting in vitro HCC proliferation and in vivo antitumor growth in a xenograft HCC model. Findings from this study provides further evidence for a tumor suppressor role of LHPP and potential therapeutic value of restoring the expression of LHPP by saRNA for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Pirofosfatase Inorgânica , Neoplasias Hepáticas , Humanos , Pirofosfatase Inorgânica/metabolismo , Pirofosfatase Inorgânica/genética , Proliferação de Células/efeitos dos fármacos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Camundongos , Linhagem Celular Tumoral , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Nus
12.
Adv Sci (Weinh) ; 11(24): e2309298, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38639382

RESUMO

M2-polarized tumor-associated macrophages (M2 TAMs) promote cancer progression. Exosomes mediate cellular communication in the tumor microenvironment (TME). However, the roles of exosomes from M2 TAMs in gastric cancer progression are unclear. Herein, it is reported that M2 TAMs-derived exosomes induced aerobic glycolysis in gastric cancer cells and enhanced their proliferation, metastasis, and chemoresistance in a glycolysis-dependent manner. It is identified that MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) is enriched in M2 TAM exosomes and confirmed that MALAT1 transfer from M2 TAMs to gastric cancer cells via exosomes mediates this effect. Mechanistically, MALAT1 interacted with the δ-catenin protein and suppressed its ubiquitination and degradation by ß-TRCP. In addition, MALAT1 upregulated HIF-1α expression by acting as a sponge for miR-217-5p. The activation of ß-catenin and HIF-1α signaling pathways by M2 TAM exosomes collectively led to enhanced aerobic glycolysis in gastric cancer cells. Finally, a dual-targeted inhibition of MALAT1 in both gastric cancer cells and macrophages by exosome-mediated delivery of siRNA remarkably suppressed gastric cancer growth and improved chemosensitivity in mouse tumor models. Taken together, these results suggest that M2 TAMs-derived exosomes promote gastric cancer progression via MALAT1-mediated regulation of glycolysis. The findings offer a potential target for gastric cancer therapy.


Assuntos
Progressão da Doença , Exossomos , Glicólise , RNA Longo não Codificante , Neoplasias Gástricas , Macrófagos Associados a Tumor , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Exossomos/metabolismo , Exossomos/genética , Humanos , Camundongos , Animais , Microambiente Tumoral/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proliferação de Células/genética
13.
J Transl Med ; 22(1): 364, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632610

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is an endocrinological and metabolic disorder that can lead to female infertility. Lipid metabolomics and proteomics are the new disciplines in systems biology aimed to discover metabolic pathway changes in diseases and diagnosis of biomarkers. This study aims to reveal the features of PCOS to explore its pathogenesis at the protein and metabolic level. METHODS: We collected follicular fluid samples and granulosa cells of women with PCOS and normal women who underwent in vitro fertilization(IVF) and embryo transfer were recruited. The samples were for the lipidomic study and the proteomic study based on the latest metabolomics and proteomics research platform. RESULTS: Lipid metabolomic analysis revealed abnormal metabolism of glycerides, glycerophospholipids, and sphingomyelin in the FF of PCOS. Differential lipids were strongly linked with the rate of high-quality embryos. In total, 144 differentially expressed proteins were screened in ovarian granulosa cells in women with PCOS compared to controls. Go functional enrichment analysis showed that differential proteins were associated with blood coagulation and lead to follicular development disorders. CONCLUSION: The results showed that the differential lipid metabolites and proteins in PCOS were closely related to follicle quality,which can be potential biomarkers for oocyte maturation and ART outcomes.


Assuntos
Síndrome do Ovário Policístico , Feminino , Humanos , Líquido Folicular/química , Líquido Folicular/metabolismo , Proteômica , Biomarcadores/metabolismo , Lipídeos
14.
Clin Transl Med ; 14(4): e1628, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572589

RESUMO

BACKGROUND: Acute myeloid leukaemia (AML) is a haematological malignancy with unfavourable prognosis. Despite the effectiveness of chemotherapy and targeted therapy, relapse or drug resistance remains a major threat to AML patients. N6-methyladenosine (m6A) RNA methylation and super-enhancers (SEs) are extensively involved in the leukaemogenesis of AML. However, the potential relationship between m6A and SEs in AML has not been elaborated. METHODS: Chromatin immunoprecipitation (ChIP) sequencing data from Gene Expression Omnibus (GEO) cohort were analysed to search SE-related genes. The mechanisms of m6 A-binding proteins IGF2BP2 and IGF2BP3 on DDX21 were explored via methylated RNA immunoprecipitation (MeRIP) assays, RNA immunoprecipitation (RIP) assays and luciferase reporter assays. Then we elucidated the roles of DDX21 in AML through functional assays in vitro and in vivo. Finally, co-immunoprecipitation (Co-IP) assays, RNA sequencing and ChIP assays were performed to investigate the downstream mechanisms of DDX21. RESULTS: We identified two SE-associated transcripts IGF2BP2 and IGF2BP3 in AML. High enrichment of H3K27ac, H3K4me1 and BRD4 was observed in IGF2BP2 and IGF2BP3, whose expression were driven by SE machinery. Then IGF2BP2 and IGF2BP3 enhanced the stability of DDX21 mRNA in an m6A-dependent manner. DDX21 was highly expressed in AML patients, which indicated a poor survival. Functionally, knockdown of DDX21 inhibited cell proliferation, promoted cell apoptosis and led to cell cycle arrest. Mechanistically, DDX21 recruited transcription factor YBX1 to cooperatively trigger ULK1 expression. Moreover, silencing of ULK1 could reverse the promoting effects of DDX21 overexpression in AML cells. CONCLUSIONS: Dysregulation of SE-IGF2BP2/IGF2BP3-DDX21 axis facilitated the progression of AML. Our findings provide new insights into the link between SEs and m6A modification, elucidate the regulatory mechanisms of IGF2BP2 and IGF2BP3 on DDX21, and reveal the underlying roles of DDX21 in AML.


Assuntos
Leucemia Mieloide Aguda , Proteínas Nucleares , Humanos , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular , RNA Helicases DEAD-box , Leucemia Mieloide Aguda/genética , Recidiva Local de Neoplasia , RNA , Proteínas de Ligação a RNA/genética , Fatores de Transcrição , Regulação para Cima/genética
15.
Front Microbiol ; 15: 1360225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450163

RESUMO

Colorectal cancer (CRC) is a common malignancy affecting the gastrointestinal tract worldwide. The etiology and progression of CRC are related to factors such as environmental influences, dietary structure, and genetic susceptibility. Intestinal microbiota can influence the integrity of the intestinal mucosal barrier and modulate intestinal immunity by secreting various metabolites. Dysbiosis of the intestinal microbiota can affect the metabolites of the microbial, leading to the accumulation of toxic metabolites, which can trigger chronic inflammation or DNA damage and ultimately lead to cellular carcinogenesis and the development of CRC. Postbiotics are preparations of inanimate microorganisms or their components that are beneficial to the health of the host, with the main components including bacterial components (e.g., exopolysaccharides, teichoic acids, surface layer protein) and metabolites (e.g., short-chain fatty acids, tryptophan metabolite, bile acids, vitamins and enzymes). Compared with traditional probiotics, it has a more stable chemical structure and higher safety. In recent years, it has been demonstrated that postbiotics are involved in regulating intestinal microecology and improving the progression of CRC, which provides new ideas for the prevention and diagnosis of CRC. In this article, we review the changes in intestinal microbiota in different states of the gut and the mechanisms of anti-tumor activity of postbiotic-related components, and discuss the potential significance of postbiotics in the diagnosis and treatment of CRC. This reviews the changes and pathogenesis of intestinal microbiota in the development of CRC, and summarizes the relevant mechanisms of postbiotics in resisting the development of CRC in recent years, as well as the advantages and limitations of postbiotics in the treatment process of CRC.

16.
J Assist Reprod Genet ; 41(4): 1087-1096, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38321265

RESUMO

PURPOSE: Decreased ovarian reserve function is mainly characterized by female endocrine disorders and fertility decline. Follicular fluid (FF) exosomal microRNAs (miRNAs) have been shown to regulate the function of granulosa cells (GCs). The present study explored differentially expressed miRNAs (DEmiRNAs) in patients with diminished ovarian reserve (DOR). METHODS: FF was collected from 12 DOR patients and 12 healthy controls. DEmiRNAs between the two groups were identified and analyzed using high-throughput sequencing technology and validated by real-time quantitative PCR (RT-qPCR). RESULTS: A total of 592 DEmiRNAs were identified using high-throughput miRNA sequencing, of which 213 were significantly upregulated and 379 were significantly downregulated. The sequencing results were further validated by RT-qPCR. These DEmiRNA target genes were mainly involved in the cancer pathway, phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, regulation of actin cytoskeleton signaling pathway, and biological processes related to protein binding, nucleoplasm, cytoplasm, and cell membrane. CONCLUSION: FF exosomal miRNAs are significantly differentially expressed in DOR patients versus non-DOR patients, underscoring their crucial role in regulating the pathogenesis of DOR.


Assuntos
Exossomos , Líquido Folicular , MicroRNAs , Reserva Ovariana , Humanos , Feminino , Líquido Folicular/metabolismo , MicroRNAs/genética , Exossomos/genética , Exossomos/metabolismo , Reserva Ovariana/genética , Adulto , Células da Granulosa/metabolismo , Células da Granulosa/patologia , Infertilidade Feminina/genética , Infertilidade Feminina/metabolismo , Infertilidade Feminina/patologia , Transdução de Sinais/genética , Sequenciamento de Nucleotídeos em Larga Escala , Regulação da Expressão Gênica/genética , Perfilação da Expressão Gênica
17.
Zhongguo Zhong Yao Za Zhi ; 49(2): 471-486, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403323

RESUMO

This study combined network pharmacology, molecular docking, and in vitro experiments to explore the potential mechanism of the active components of the n-butanol fraction of Wenxia Formula(NWXF) combined with gefitinib(GEF) in treating non-small cell lung cancer(NSCLC). Ultra-performance liquid chromatography-quadrupole Orbitrap mass spectrometry(UPLC-Q-Orbitrap MS) was employed to detect the main chemical components of NWXF. The active components of NWXF were retrieved from SwissADME, and the candidate targets of these active components were retrieved from SwissTargetPrediction. Online Mendelian Inheritance in Man(OMIM) and GeneCards were searched for the targets of NSCLC. Cytoscape 3.9.0 and STRING were employed to build the protein-protein interaction(PPI) network with the common targets shared by NWXF and NSCLC. Gene Ontology(GO) annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment were performed in DAVID to predict the potential mechanisms. Finally, molecular docking between the main active ingredients and key targets was conducted in SYBYL-X 2.0. The methyl thiazolyl tetrazolium(MTT) assay was employed to evaluate the inhibitory effects of NWXF and/or GEF on the proliferation of human non-small cell lung cancer cells(A549 and PC-9). Additionally, the impact of NWXF on human embryonic lung fibroblast cells(MRC-5) was assessed. The effectiveness of the drug combination was evaluated based on the Q value. The terminal-deoxynucleoitidyl transferase mediated nick-end labeling(TUNEL) assay was employed to examine the apoptosis of A549 and PC-9 cells treated with NWXF and/or GEF. Quantitative real-time PCR(qRT-PCR) was employed to measure the mRNA levels of epidermal growth factor receptor(EGFR), c-Jun N-terminal kinase(JNK), and Bcl2-associated X protein(Bax) in the A549 and PC-9 cells treated with NWXF and/or GEF. Western blot was employed to determine the protein levels of EGFR, p-EGFR, JNK, p-JNK, and Bax in the A549 and PC-9 cells treated with NWXF and/or GEF. A total of 77 active components, 488 potential targets, and 49 key targets involved in the treatment of NSCLC with NWXF were predicted. The results of GO annotation showed that NWXF may treat NSCLC by regulating the biological processes such as cell proliferation, apoptosis, and protein phosphorylation. KEGG enrichment revealed that the key targets of NWXF in treating NSCLC were enriched in the mitogen-activated protein kinase(MAPK), phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT), hypoxia-inducible factor-1(HIF-1), and microRNA-related signaling pathways. Molecular docking results showed that 91.9% of the docking scores were greater than 5, indicating the strong binding capability between main active components and key targets. The cell experiments demonstrated that NWXF combined with GEF synergistically inhibited the proliferation, promoted the apoptosis, decreased p-EGFR/EGFR and p-JNK/JNK values, down-regulated the mRNA levels of EGFR and JNK, and up-regulated the mRNA and protein levels of Bax in A549 and PC-9 cells. In conclusion, NWXF combined with GEF can regulate the EGFR/JNK pathway to promote the apoptosis of NSCLC cells, thus treating NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Gefitinibe/farmacologia , 1-Butanol , Proteína X Associada a bcl-2 , Farmacologia em Rede , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Receptores ErbB , RNA Mensageiro , Medicamentos de Ervas Chinesas/farmacologia
18.
Cardiovasc Diabetol ; 23(1): 86, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419039

RESUMO

BACKGROUND: Studies on the relationship between insulin resistance (IR) surrogates and long-term all-cause mortality in patients with coronary heart disease (CHD) and hypertension are lacking. This study aimed to explore the relationship between different IR surrogates and all-cause mortality and identify valuable predictors of survival status in this population. METHODS: The data came from the National Health and Nutrition Examination Survey (NHANES 2001-2018) and National Death Index (NDI). Multivariate Cox regression and restricted cubic splines (RCS) were performed to evaluate the relationship between homeostatic model assessment of IR (HOMA-IR), triglyceride glucose index (TyG index), triglyceride glucose-body mass index (TyG-BMI index) and all-cause mortality. The recursive algorithm was conducted to calculate inflection points when segmenting effects were found. Then, segmented Kaplan-Meier analysis, LogRank tests, and multivariable Cox regression were carried out. Receiver operating characteristic (ROC) and calibration curves were drawn to evaluate the differentiation and accuracy of IR surrogates in predicting the all-cause mortality. Stratified analysis and interaction tests were conducted according to age, gender, diabetes, cancer, hypoglycemic and lipid-lowering drug use. RESULTS: 1126 participants were included in the study. During the median follow-up of 76 months, 455 participants died. RCS showed that HOMA-IR had a segmented effect on all-cause mortality. 3.59 was a statistically significant inflection point. When the HOMA-IR was less than 3.59, it was negatively associated with all-cause mortality [HR = 0.87,95%CI (0.78, 0.97)]. Conversely, when the HOMA-IR was greater than 3.59, it was positively associated with all-cause mortality [HR = 1.03,95%CI (1.00, 1.05)]. ROC and calibration curves indicated that HOMA-IR was a reliable predictor of survival status (area under curve = 0,812). No interactions between HOMA-IR and stratified variables were found. CONCLUSION: The relationship between HOMA-IR and all-cause mortality was U-shaped in patients with CHD and hypertension. HOMA-IR was a reliable predictor of all-cause mortality in this population.


Assuntos
Doença das Coronárias , Hipertensão , Resistência à Insulina , Humanos , Estudos Longitudinais , Inquéritos Nutricionais , Glicemia , Estudos de Coortes , Hipertensão/diagnóstico , Doença das Coronárias/diagnóstico , Triglicerídeos , Glucose , Biomarcadores
19.
Braz J Microbiol ; 55(1): 117-123, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38261263

RESUMO

Bats are important reservoirs for many zoonotic viruses. To explore and monitor potential novel viruses carried by bats, 21 liver samples of bats (Hipposideros armiger) were collected from Yunnan Province in southern China. Only one (4.8%) of all models was detected with adenovirus. The whole genome strain obtained by the viral metagenomics method combined with PCR was temporarily named YN01. The complete genome of YN01 was 37,676 bp, with a G + C content of 55.20% and 28 open reading frames. Phylogenetic analysis indicated that the strain YN01 can be classified as genus Mastadenovirus and was the most similar to the adenovirus isolated from Rhinolophus sinicus in China in 2016. The analysis is needed to verify the possibility of cross-species transmission. This virological investigation has increased our understanding of the ecology of bat-borne viruses in this area and provided a reference for possible future infectious diseases.


Assuntos
Infecções por Adenoviridae , Quirópteros , Vírus , Animais , Adenoviridae/genética , Filogenia , China , Infecções por Adenoviridae/veterinária , Vírus/genética , Fígado , Genoma Viral
20.
Biochem Pharmacol ; 219: 115964, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38049011

RESUMO

Excessive osteoclast activation is a leading cause of osteoporosis. Therefore, identifying molecular targets and relevant pharmaceuticals that inhibit osteoclastogenesis is of substantial clinical importance. Prior research has indicated that transcriptional coactivator with PDZ-binding motif (TAZ) impedes the process of osteoclastogenesis by engaging the nuclear factor (NF)-κB signaling pathway, thereby suggesting TAZ activation as a potential therapeutic approach to treat osteoporosis. (R)-PFI-2 is a novel selective inhibitor of SETD7 methyltransferase activity, which prevents the nuclear translocation of YAP, a homolog of TAZ. Therefore, we hypothesized that (R)-PFI-2 could be an effective therapeutic agent in the treatment of osteoporosis. To test this hypothesis and explore the underlying mechanism, we first examined the impact of (R)-PFI-2 on osteoclastogenesis in bone marrow macrophages (BMMs) in vitro. (R)-PFI-2 treatment inhibited TAZ phosphorylation induced by NF-κB, thereby enhancing its nuclear localization, protein expression, and activation in BMMs. Moreover, (R)-PFI-2-induced TAZ activation inhibited osteoclast formation in a dose-dependent manner, which involved inhibition of osteoclastogenesis through the TAZ and downstream NF-κB pathways. Furthermore, (R)-PFI-2 inhibited osteoclastogenesis and prevented ovariectomy-induced bone loss in vivo in a mouse model. Overall, our findings suggest that TAZ activation by (R)-PFI-2 inhibits osteoclastogenesis and prevents osteoporosis, indicating an effective strategy for treating osteoclast-induced osteoporosis.


Assuntos
Reabsorção Óssea , Osteoporose , Animais , Camundongos , Feminino , Humanos , Osteogênese , NF-kappa B/metabolismo , Reabsorção Óssea/prevenção & controle , Osteoclastos , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle , Ligante RANK/farmacologia , Ovariectomia , Diferenciação Celular , Histona-Lisina N-Metiltransferase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA