Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Oral Investig ; 27(6): 2875-2885, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36735089

RESUMO

OBJECTIVES: This study aims to investigate the anti-inflammatory effect of curcumin and underlying mechanisms regarding the modulation of the nod-like receptor pyrin domain containing 3 (NLRP3) inflammasome in human dental pulp stem cells (hDPSCs). MATERIALS AND METHODS: The impact of curcumin on the viability of hDPSCs was evaluated. The effect of curcumin on the expression of IL-1ß and NLRP3 in hDPSCs stimulated by lipopolysaccharide (LPS) was assessed. Then, LPS-primed hDPSCs were pre-treated with curcumin before ATP triggering NLRP3 inflammasome activation, and NLRP3 inflammasome-related mediators were assessed. The mechanism of curcumin inactivation of LPS plus ATP-induced inflammasome associated with NF-κB pathway was explored. The NF-κB pathway related pro-inflammatory mediators at mRNA and protein levels were evaluated. The expression of NF-κB p65 and phosphorylation p65 was visualized after curcumin or NF-κB inhibitor administrating respectively in hDPSCs with an activated NLRP3 inflammasome. Statistical analysis was performed. RESULTS: While curcumin at the concentration of 0.5-5 µM showed no obvious impact on the viability of hDPSCs, it significantly decreased IL-1ß and NLRP3 mRNA expression in LPS-induced hDPSCs in a dose-dependent manner. Curcumin significantly inhibited the LPS plus ATP-primed NLRP3 inflammasome activation in hDPSCs (NLRP3, ASC, caspase-1, and IL-1ß). Curcumin evidently attenuated the LPS plus ATP-induced expression of NF-κB pathway-related pro-inflammatory mediators (IL-6, IL-8, TNF-α, and COX-2). Furthermore, curcumin effectively reduced p65 phosphorylation, which acts as an NF-κB inhibitor in hDPSCs with an activated NLRP3 inflammasome. CONCLUSIONS: Curcumin pre-treatment may exert an anti-inflammatory role via inactivation of the NLRP3 inflammasome by inhibiting NF-κB p65 phosphorylation in cultured hDPSCs. CLINICAL RELEVANCE: Curcumin may have therapeutic potential in pulp inflammation.


Assuntos
Curcumina , Inflamassomos , Humanos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lipopolissacarídeos/farmacologia , Curcumina/farmacologia , Fosforilação , Polpa Dentária/metabolismo , Mediadores da Inflamação , Anti-Inflamatórios/farmacologia , RNA Mensageiro/metabolismo , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Células-Tronco/metabolismo
2.
Data Brief ; 39: 107491, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34712760

RESUMO

In this article, we present four sets of data from high-throughput screening (HTS) studies of different chemically defined media using an industrially relevant Chinese hamster ovary (CHO) cell line. While complex hydrolysate media was used in the early phase process development and manufacturing of a monoclonal antibody (mAb), here we seek to determine an appropriate chemically defined media for late phase process development. Over 150 combinations of chemically defined basal media, feed media, and basal and feed media supplements, such as polyphenolic flavonoid antioxidants (including rosmarinic acid (RA)), were evaluated in four HTS studies to replace the complex hydrolysate media. Specifically, these four screening studies incorporated custom design of experiment (DOE), one-factor-at-a-time (OFAT), and definitive screening design methodologies for titer improvement. Titer was improved two fold compared to the early phase process using the addition of RA to chemically defined media. This dataset exemplifies how HTS can be used as an effective approach to systematically and statistically determine media composition and supplementation to increase mAb titer. These data were presented in connection with a published paper [1].

3.
Biotechnol Prog ; 27(4): 1190-4, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21595052

RESUMO

This study reports the effects of varying concentrations of copper sulfate on the metabolic and gene transcriptional profile of a recombinant Chinese hamster ovary (CHO) cell line producing an immunoglobulin G (IgG)-fusion protein (B0). Addition of 50 µM copper sulfate significantly decreased lactate accumulation in the cultures while increasing viable cell density and protein titer. These changes could be seen from day 6 and became increasingly evident with culture duration. Reducing the copper sulfate concentration to 5 µM retained all the above beneficial effects, but with the added benefit of reduced levels of the aggregated form of the B0 protein. To profile the cellular changes due to copper sulfate addition at the transcriptional level, Affymetrix® CHO microarrays were used to identify differentially expressed genes related to reduced cellular stresses and facilitated cell cycling. Based on the microarray results, down-regulation of the transferrin receptor and lactate dehydrogenase, and up-regulation of a cytochrome P450 family-2 polypeptide were then confirmed by Western blotting. These results showed that copper played a critical role in cell metabolism and productivity on recombinant CHO cells and highlighted the usefulness of microarray data for better understanding biological responses on medium modification.


Assuntos
Técnicas de Cultura de Células/métodos , Sulfato de Cobre/farmacologia , Animais , Western Blotting , Células CHO , Ciclo Celular/efeitos dos fármacos , Cricetinae , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Ácido Láctico/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
4.
J Clin Invest ; 119(6): 1546-57, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19436114

RESUMO

Although oxidative stress has been implicated in acute acetaminophen-induced liver failure and in chronic liver cirrhosis and hepatocellular carcinoma (HCC), no common underlying metabolic pathway has been identified. Recent case reports suggest a link between the pentose phosphate pathway (PPP) enzyme transaldolase (TAL; encoded by TALDO1) and liver failure in children. Here, we show that Taldo1-/- and Taldo1+/- mice spontaneously developed HCC, and Taldo1-/- mice had increased susceptibility to acetaminophen-induced liver failure. Oxidative stress in Taldo1-/- livers was characterized by the accumulation of sedoheptulose 7-phosphate, failure to recycle ribose 5-phosphate for the oxidative PPP, depleted NADPH and glutathione levels, and increased production of lipid hydroperoxides. Furthermore, we found evidence of hepatic mitochondrial dysfunction, as indicated by loss of transmembrane potential, diminished mitochondrial mass, and reduced ATP/ADP ratio. Reduced beta-catenin phosphorylation and enhanced c-Jun expression in Taldo1-/- livers reflected adaptation to oxidative stress. Taldo1-/- hepatocytes were resistant to CD95/Fas-mediated apoptosis in vitro and in vivo. Remarkably, lifelong administration of the potent antioxidant N-acetylcysteine (NAC) prevented acetaminophen-induced liver failure, restored Fas-dependent hepatocyte apoptosis, and blocked hepatocarcinogenesis in Taldo1-/- mice. These data reveal a protective role for the TAL-mediated branch of the PPP against hepatocarcinogenesis and identify NAC as a promising treatment for liver disease in TAL deficiency.


Assuntos
Acetilcisteína/farmacologia , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/prevenção & controle , Transformação Celular Neoplásica/metabolismo , Falência Hepática/induzido quimicamente , Neoplasias Hepáticas/enzimologia , Transaldolase/deficiência , Animais , Apoptose , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/prevenção & controle , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Fosforilação , Transaldolase/metabolismo , alfa-Fetoproteínas/metabolismo , beta Catenina/metabolismo , Receptor fas/metabolismo
5.
Endocrinology ; 149(11): 5440-8, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18669602

RESUMO

Although primarily regarded as a sex steroid, estrogen plays an important role in many other physiological processes including adipose development and disposition. Estrogen sulfotransferase (EST) regulates estrogen activity by catalyzing the sulfoconjugation and inactivation of estrogens. In the present study, we report the gender-specific expression of EST in adipose tissues of the mouse and describe contrasting mechanisms of EST regulation in the fat and liver. EST is expressed in the white adipose tissues of the male but not female mouse. Within the various fat depots of male mice, it is most abundantly expressed in the epididymal fat pad, with variable levels in other white fats and no expression in the brown fat. Fractionation of epididymal fat cells showed EST to be predominantly associated with stromal vascular cells (preadipocyte). EST expression in male mouse adipose tissues is dependent on testosterone as castration ablated, and administration of exogenous testosterone restored, EST expression. Furthermore, testosterone treatment induced abnormal EST expression in the parametrial fat of female mice. EST induction by testosterone in female mice is tissue specific because testosterone treatment had no effect on liver EST expression. Conversely, the liver X receptor agonist TO-901317 induced EST expression in female mouse liver but not in their adipose tissues. Finally, we demonstrate that male EST knockout mice developed increased epididymal fat accumulation with enlarged adipocyte size. We conclude that EST is expressed in adipose tissues in a sexually dimorphic manner, is regulated by testosterone, and plays a physiological role in regulating adipose tissue accumulation in male mice.


Assuntos
Tecido Adiposo/metabolismo , Regulação Enzimológica da Expressão Gênica , Caracteres Sexuais , Sulfotransferases/genética , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/enzimologia , Adiposidade/genética , Animais , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Sulfotransferases/metabolismo , Testosterona/farmacologia
6.
Biochem J ; 415(1): 123-34, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18498245

RESUMO

TAL (transaldolase) was originally described in the yeast as an enzyme of the PPP (pentose phosphate pathway). However, certain organisms and mammalian tissues lack TAL, and the overall reason for its existence is unclear. Recently, deletion of Ser(171) (TALDeltaS171) was found in five patients causing inactivation, proteasome-mediated degradation and complete deficiency of TAL. In the present study, microarray and follow-up Western-blot, enzyme-activity and metabolic studies of TALDeltaS171 TD (TAL-deficient) lymphoblasts revealed co-ordinated changes in the expression of genes involved in the PPP, mitochondrial biogenesis, oxidative stress, and Ca(2+) fluxing. Sedoheptulose 7-phosphate was accumulated, whereas G6P (glucose 6-phosphate) was depleted, indicating a failure to recycle G6P for the oxidative branch of the PPP. Nucleotide analysis showed depletion of NADPH and NAD(+) and accumulation of ADP-ribose. TD cells have diminished Deltapsi(m) (mitochondrial transmembrane potential) and increased mitochondrial mass associated with increased production of nitric oxide and ATP. TAL deficiency resulted in enhanced spontaneous and H(2)O(2)-induced apoptosis. TD lymphoblasts showed increased expression of CD38, which hydrolyses NAD(+) into ADP-ribose, a trigger of Ca(2+) release from the endoplasmic reticulum that, in turn, facilitated CD20-induced apoptosis. By contrast, TD cells were resistant to CD95/Fas-induced apoptosis, owing to a dependence of caspase activity on redox-sensitive cysteine residues. Normalization of TAL activity by adeno-associated-virus-mediated gene transfer reversed the elevated CD38 expression, ATP and Ca(2+) levels, suppressed H(2)O(2)- and CD20-induced apoptosis and enhanced Fas-induced cell death. The present study identified the TAL deficiency as a modulator of mitochondrial homoeostasis, Ca(2+) fluxing and apoptosis.


Assuntos
Apoptose/fisiologia , Homeostase/fisiologia , Mitocôndrias/fisiologia , Via de Pentose Fosfato/fisiologia , Transaldolase/deficiência , Linhagem Celular Transformada , Células Cultivadas , Feminino , Glucose-6-Fosfato/metabolismo , Humanos , Microscopia Eletrônica , Transdução de Sinais , Fosfatos Açúcares/metabolismo , Transaldolase/genética
7.
Proc Natl Acad Sci U S A ; 103(40): 14813-8, 2006 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-17003133

RESUMO

Fertility of spermatozoa depends on maintenance of the mitochondrial transmembrane potential (Deltapsi(m)), which is generated by the electron-transport chain and regulated by an oxidation-reduction equilibrium of reactive oxygen intermediates, pyridine nucleotides, and glutathione (GSH). Here, we report that male mice lacking transaldolase (TAL)(-/-) are sterile because of defective forward motility. TAL(-/-) spermatozoa show loss of Deltapsi(m) and mitochondrial membrane integrity because of diminished NADPH, NADH, and GSH. Mitochondria constitute major Ca(2+) stores; thus, diminished mitochondrial mass accounts for reduced Ca(2+) fluxing, defective forward motility, and infertility. Reduced forward progression of TAL-deficient spermatozoa is associated with diminished mitochondrial reactive oxygen intermediate production and Ca(2+) levels, intracellular acidosis, and compensatory down-regulation of carbonic anhydrase IV and overexpression of CD38 and gamma-glutamyl transferase. Microarray analyses of gene expression in the testis, caput, and cauda epididymidis of TAL(+/+), TAL(+/-), and TAL(-/-) littermates confirmed a dominant impact of TAL deficiency on late stages of sperm-cell development, affecting the electron-transport chain and GSH metabolism. Stimulation of de novo GSH synthesis by oral N-acetyl-cysteine normalized the low fertility rate of TAL(+/-) males without affecting the sterility of TAL(-/-) males. Whereas TAL(-/-) sperm failed to fertilize TAL(+/+) oocytes in vitro, sterility of TAL(-/-) sperm was circumvented by intracytoplasmic sperm injection, indicating that TAL deficiency influenced the structure and function of mitochondria without compromising the nucleus and DNA integrity. Collectively, these data reveal an essential role of TAL in sperm-cell mitochondrial function and, thus, male fertility.


Assuntos
Fertilidade/fisiologia , Membranas Mitocondriais/enzimologia , Espermatozoides/enzimologia , Espermatozoides/fisiologia , Transaldolase/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Epididimo/enzimologia , Epididimo/ultraestrutura , Expressão Gênica , Inativação Gênica , Heterozigoto , Homozigoto , Infertilidade Masculina , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Knockout , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Dados de Sequência Molecular , NAD/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Recombinação Genética , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/citologia , Espermatozoides/ultraestrutura , Fosfatos Açúcares/metabolismo , Transaldolase/deficiência
8.
J Biol Chem ; 281(45): 34574-91, 2006 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-16935861

RESUMO

A novel 2986-base transcript encoded by the antisense strand of the HRES-1 human endogenous retrovirus was isolated from peripheral blood lymphocytes. This transcript codes for a 218-amino acid protein, termed HRES-1/Rab4, based on homology to the Rab4 family of small GTPases. Antibody 13407 raised against recombinant HRES-1/Rab4 detected a native protein of identical molecular weight in human T cells. HRES-1 nucleotides 2151-1606, located upstream of HRES-1/Rab4 exon 1, have promoter activity when oriented in the direction of HRES-1/Rab4 transcription. The human immunodeficiency virus, type 1 (HIV-1), tat gene stimulates transcriptional activity of the HRES-1/Rab4 promoter via trans-activation of the HRES-1 long terminal repeat. Transfection of HIV-1 tat into HeLa cells or infection of H9 and Jurkat cells by HIV-1 increased HRES-1/Rab4 protein levels. Overexpression of HRES-1/Rab4 in Jurkat cells abrogated HIV infection, gag p24 production, and apoptosis, whereas dominant-negative HRES-1/Rab4(S27N) had the opposite effects. HRES-1/Rab4 inhibited surface expression of CD4 and targeted it for lysosomal degradation. HRES-1/Rab4(S27N) enhanced surface expression, recycling, and total cellular CD4 content. Infection by HIV elicited a coordinate down-regulation of CD4 and up-regulation of HRES-1/Rab4 in PBL. Moreover, overexpression of HRES-1/Rab4 reduced CD4 expression on peripheral blood CD4+ T cells. Stimulation by HIV-1 of HRES-1/Rab4 expression and its regulation of CD4 recycling reveal novel coordinate interactions between an infectious retrovirus and the human genome.


Assuntos
Antígenos CD4/metabolismo , Regulação Viral da Expressão Gênica , Produtos do Gene tat/genética , Infecções por HIV/metabolismo , HIV-1/patogenicidade , Proteínas rab4 de Ligação ao GTP/metabolismo , Antígenos CD/metabolismo , Apoptose , Sequência de Bases , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Cloranfenicol O-Acetiltransferase/metabolismo , Dependovirus/genética , Suscetibilidade a Doenças , Éxons/genética , Citometria de Fluxo , Produtos do Gene tat/farmacologia , Genes Dominantes , Proteína do Núcleo p24 do HIV/metabolismo , Infecções por HIV/virologia , Repetição Terminal Longa de HIV/genética , Células HeLa , Humanos , Íntrons/genética , Células Jurkat , Lisossomos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação/genética , Receptores da Transferrina/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência do Ácido Nucleico , Transfecção , Proteínas rab4 de Ligação ao GTP/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana
9.
Methods Mol Med ; 102: 87-114, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15286382

RESUMO

Systemic lupus erythematosus (SLE) is characterized by abnormal activation and cell death signaling within the immune system. Activation, proliferation, or death of cells of the immune system are dependent on controlled reactive oxygen intermediate (ROI) production and ATP synthesis in mitochondria. The mitochondrial transmembrane potential (Delta(Psi)m) reflects the energy stored in the electrochemical gradient across the inner mitochondrial membrane, which in turn is used by F0F1-ATPase to convert adenosine 5'-diphosphate to ATP during oxidative phosphorylation. Mitochondrial hyperpolarization and transient ATP depletion represent early and reversible steps in T-cell activation and apoptosis. By contrast, T lymphocytes of patients with SLE exhibit elevated Delta(Psi)m, that is, persistent mitochondrial hyperpolarization, cytoplasmic alkalinization, increased ROI production, as well as diminished levels of intracellular glutathione and ATP. Oxidative stress affects signaling through the T-cell receptor as well as the activity of redox-sensitive caspases. ATP depletion may be responsible for diminished activation-induced apoptosis and sensitize lupus T cells to necrosis. Mitochondrial dysfunction is identified as a key mechanism in the pathogenesis of SLE.


Assuntos
Apoptose , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Mitocôndrias/metabolismo , Linfócitos T/metabolismo , Linfócitos T/patologia , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/metabolismo , Western Blotting , Caspases/análise , Caspases/metabolismo , Cromatografia Líquida de Alta Pressão , Citometria de Fluxo , Glutationa/análise , Glutationa/metabolismo , Humanos , Técnicas In Vitro , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/imunologia , Ativação Linfocitária , Potenciais da Membrana , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/imunologia
10.
J Biol Chem ; 279(13): 12190-205, 2004 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-14702349

RESUMO

Transaldolase regulates redox-dependent apoptosis through controlling NADPH and ribose 5-phosphate production via the pentose phosphate pathway. The minimal promoter sufficient to drive chloramphenicol acetyltransferase reporter gene activity was mapped to nucleotides -49 to -1 relative to the transcription start site of the human transaldolase gene. DNase I footprinting with nuclear extracts of transaldolase-expressing cell lines unveiled protection of nucleotides -29 to -16. Electrophoretic mobility shift assays identified a single dominant DNA-protein complex that was abolished by consensus sequence for transcription factor ZNF143/76 or mutation of the ZNF76/143 motif within the transaldolase promoter. Mutation of an AP-2alpha recognition sequence, partially overlapping the ZNF143 motif, increased TAL-H promoter activity in HeLa cells, without significant impact on HepG2 cells, which do not express AP-2alpha. Cooperativity of ZNF143 with AP-2alpha was supported by supershift analysis of HeLa cells where AP-2 may act as cell type-specific repressor of TAL promoter activity. However, overexpression of full-length ZNF143, ZNF76, or dominant-negative DNA-binding domain of ZNF143 enhanced, maintained, or abolished transaldolase promoter activity, respectively, in HepG2 and HeLa cells, suggesting that ZNF143 initiates transcription from the transaldolase core promoter. ZNF143 overexpression also increased transaldolase enzyme activity. ZNF143 and transaldolase expression correlated in 21 different human tissues and were coordinately upregulated 14- and 34-fold, respectively, in lactating mammary glands compared with nonlactating ones. Chromatin immunoprecipitation studies confirm that ZNF143/73 associates with the transaldolase promoter in vivo. Thus, ZNF143 plays a key role in basal and tissue-specific expression of transaldolase and regulation of the metabolic network controlling cell survival and differentiation.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Transativadores/fisiologia , Transaldolase/biossíntese , Motivos de Aminoácidos , Apoptose , Sequência de Bases , Sítios de Ligação , Ligação Competitiva , Western Blotting , Diferenciação Celular , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Cloranfenicol O-Acetiltransferase/metabolismo , Cromatina/metabolismo , DNA/química , Proteínas de Ligação a DNA/metabolismo , Desoxirribonuclease I/metabolismo , Deleção de Genes , Genes Dominantes , Genes Reporter , Células HeLa , Humanos , Células Jurkat , Fatores de Transcrição Kruppel-Like , Dados de Sequência Molecular , Mutação , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Oxirredução , Plasmídeos/metabolismo , Testes de Precipitina , Regiões Promotoras Genéticas , Transdução de Sinais , Distribuição Tecidual , Transativadores/metabolismo , Transaldolase/metabolismo , Fator de Transcrição AP-2 , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transfecção , Regulação para Cima
11.
J Biol Chem ; 277(38): 35225-31, 2002 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-12138119

RESUMO

Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-dependent transporter of structurally diverse organic anion conjugates. The protein also actively transports a number of non-conjugated chemotherapeutic drugs and certain anionic conjugates by a presently poorly understood GSH-dependent mechanism. LY475776is a newly developed (125)I-labeled azido tricyclic isoxazole that binds toMRP1 with high affinity and specificity in a GSH-dependent manner. The compound has also been shown to photolabel a site in the COOH-proximal region of MRP1's third membrane spanning domain (MSD). It is presently not known where GSH interacts with the protein. Here, we demonstrate that the photactivateable GSH derivative azidophenacyl-GSH can substitute functionally for GSH in supporting the photolabeling of MRP1 by LY475776 and the transport of another GSH-dependent substrate, estrone 3-sulfate. In contrast to LY475776, azidophenacyl-[(35)S] photolabels both halves of the protein. Photolabeling of the COOH-proximal site can be markedly stimulated by low concentrations of estrone 3-sulfate, suggestive of cooperativity between the binding of these two compounds. We show that photolabeling of the COOH-proximal site by LY475776 and the labeling of both NH(2)- and COOH- proximal sites by azidophenacyl-GSH requires the cytoplasmic linker (CL3) region connecting the first and second MSDs of the protein, but not the first MSD itself. Although required for binding, CL3 is not photolabeled by azidophenacyl-GSH. Finally, we identify non-conserved amino acids in the third MSD that contribute to the high affinity with which LY475776 binds to MRP1.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Azidas/metabolismo , Glutationa/metabolismo , Isoxazóis/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Animais , Linhagem Celular , Humanos , Radioisótopos do Iodo , Camundongos , Marcadores de Fotoafinidade , Ensaio Radioligante , Radioisótopos de Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA