Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 12(31): e2301610, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37717208

RESUMO

Repairing high-load connective tissues, such as ligaments, by surgically implanting artificial grafts after injury is challenging because they lack biointegration with host bones for stable interfaces. Herein, a high-performance helical composite fiber (HCF) ligament by wrapping aligned carbon nanotube (CNT) sheets around polyester fibers is proposed. Anterior cruciate ligament (ACL) reconstruction surgery shows that HCF grafts could induce effective bone regeneration, thus allowing the narrowing of bone tunnel defects. Such repair of the bone tunnel is in strong contrast to the tunnel enlargement of more than 50% for commercial artificial ligaments made from bare polyester fibers. Rats reconstructed with this HCF ligament show normal jumping, walking, and running without limping. This work allows bone regeneration in vivo through a one-step surgery without seeding cells or transforming growth factors, thereby opening an avenue for high-performance artificial tissues.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Nanotubos de Carbono , Animais , Ratos , Ligamento Cruzado Anterior/transplante , Poliésteres
2.
Nanotechnology ; 30(3): 032002, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30444731

RESUMO

Cancer is a major disease that seriously threatens human health and is a leading cause of human death. At present, the commonly used cancer treatment methods are surgical therapy, chemical drug therapy and radiation therapy (RT). However, these treatments all have their own shortcomings and cannot perfectly meet the needs of clinical diagnosis and treatment. It is of great significance to improve the diagnosis and treatment level, so that the curative effect and quality of life of tumor patients can be improved. The rapid development of nanotechnology has brought hope to the diagnosis and treatment of cancer and the appearance of biofunctional magnetic hybrid nanomaterials (MHNs) has provided a new possibilities for the integration of cancer diagnosis and treatment. As a promising research direction, the multifunctional nanoplatform integrates imaging diagnosis, drug therapy and drug delivery. Better treatment effects and fewer side effects can be achieved by optimizing materials to build stable, efficient, and safe MHNs with combined functions of multimodal imaging and various treatments. This review focuses on not only the research progress of MHNs but also their applications and development trend in the integration of cancer diagnosis and treatment. A description of the applications of MHN structure optimization for both magnetic resonance imaging-based multimodal diagnosis and cancer therapy is given. Furthermore, RT is introduced and the development of MHNs for diagnosis and treatment system is investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA