Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Pharm Sin B ; 14(5): 2210-2227, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38799625

RESUMO

Although various anti-osteoporosis drugs are available, the limitations of these therapies, including drug resistance and collateral responses, require the development of novel anti-osteoporosis agents. Rhizoma Drynariae displays a promising anti-osteoporosis effect, while the effective component and mechanism remain unclear. Here, we revealed the therapeutic potential of Rhizoma Drynariae-derived nanovesicles (RDNVs) for postmenopausal osteoporosis and demonstrated that RDNVs potentiated osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) by targeting estrogen receptor-alpha (ERα). RDNVs, a natural product isolated from fresh Rhizoma Drynariae root juice by differential ultracentrifugation, exhibited potent bone tissue-targeting activity and anti-osteoporosis efficacy in an ovariectomized mouse model. RDNVs, effectively internalized by hBMSCs, enhanced proliferation and ERα expression levels of hBMSC, and promoted osteogenic differentiation and bone formation. Mechanistically, via the ERα signaling pathway, RDNVs facilitated mRNA and protein expression of bone morphogenetic protein 2 and runt-related transcription factor 2 in hBMSCs, which are involved in regulating osteogenic differentiation. Further analysis revealed that naringin, existing in RDNVs, was the active component targeting ERα in the osteogenic effect. Taken together, our study identified that naringin in RDNVs displays exciting bone tissue-targeting activity to reverse osteoporosis by promoting hBMSCs proliferation and osteogenic differentiation through estrogen-like effects.

2.
J Nanobiotechnology ; 21(1): 78, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36879291

RESUMO

Plant-derived nanovesicles (PDNVs) have been proposed as a major mechanism for the inter-kingdom interaction and communication, but the effector components enclosed in the vesicles and the mechanisms involved are largely unknown. The plant Artemisia annua is known as an anti-malaria agent that also exhibits a wide range of biological activities including the immunoregulatory and anti-tumor properties with the mechanisms to be further addressed. Here, we isolated and purified the exosome-like particles from A. annua, which were characterized by nano-scaled and membrane-bound shape and hence termed artemisia-derived nanovesicles (ADNVs). Remarkably, the vesicles demonstrated to inhibit tumor growth and boost anti-tumor immunity in a mouse model of lung cancer, primarily through remolding the tumor microenvironment and reprogramming tumor-associated macrophages (TAMs). We identified plant-derived mitochondrial DNA (mtDNA), upon internalized into TAMs via the vesicles, as a major effector molecule to induce the cGAS-STING pathway driving the shift of pro-tumor macrophages to anti-tumor phenotype. Furthermore, our data showed that administration of ADNVs greatly improved the efficacy of PD-L1 inhibitor, a prototypic immune checkpoint inhibitor, in tumor-bearing mice. Together, the present study, for the first time, to our knowledge, unravels an inter-kingdom interaction wherein the medical plant-derived mtDNA, via the nanovesicles, induces the immunostimulatory signaling in mammalian immune cells for resetting anti-tumor immunity and promoting tumor eradication.


Assuntos
DNA Mitocondrial , Plantas Medicinais , Animais , Camundongos , Inibidores de Checkpoint Imunológico , Mamíferos , Mitocôndrias , Nucleotidiltransferases , Macrófagos Associados a Tumor
3.
ACS Appl Mater Interfaces ; 15(1): 578-590, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36539930

RESUMO

It has been reported that cardiac glycosides (CGs) commonly used in clinical practice can inhibit tumor growth by inducing immunogenic cell death (ICD), and their positive benefits have been documented in several clinical trials of drug combinations. However, the inherent cardiogenic side effects need to be addressed before CGs can be truly applied in clinical antitumor therapy. In this study, a dual controlled release microsphere/hydrogel platform (OL-M/Gel) was constructed to precisely control the output of oleandrin (OL, one of the representative CGs) in situ in tumors. With the help of this intelligent drug release platform, OL can be released in vitro and in vivo in a sustained and stable manner. The ability of OL to induce ICD and the subsequent antigen presentation and cytotoxic T-cell cascades was first stated, which resulted in potent tumor growth suppression without significant side effects. In addition, the inhibition of autologous tumor recurrence and metastasis by OL-M/Gel was also revealed. This study is expected to break through the inherent bottleneck of CGs and promote their clinical transformation in the field of antitumor treatment.


Assuntos
Glicosídeos Cardíacos , Neoplasias , Humanos , Glicosídeos Cardíacos/farmacologia , Glicosídeos Cardíacos/uso terapêutico , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Microesferas , Neoplasias/tratamento farmacológico , Imunoterapia/métodos , Linhagem Celular Tumoral
4.
Adv Drug Deliv Rev ; 182: 114108, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34990792

RESUMO

Within the past decades, extracellular vesicles (EVs) have emerged as important mediators of intercellular communication in both prokaryotes and higher eukaryotes to regulate a diverse range of biological processes. Besides EVs, exosome-like nanoparticles (ELNs) derived from plants were also emerging. Comparing to EVs, ELNs are source-widespread, cost-effective and easy to obtain. Their definite activities can be utilized for potential prevention/treatment of an abundance of diseases, including metabolic syndrome, cancer, colitis, alcoholic hepatitis and infectious diseases, which highlights ELNs as promising biotherapeutics. In addition, the potential of ELNs as natural or engineered drug carriers is also attractive. In this review, we tease out the timeline of plant EVs and ELNs, introduce the arising separation, purification and characterization techniques, state the stability and transport manner, discuss the therapeutic opportunities as well as the potential as novel drug carriers. Finally, the challenges and the direction of efforts to realize the clinical transformation of ELNs are also discussed.


Assuntos
Química Farmacêutica/métodos , Portadores de Fármacos/farmacologia , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Plantas/metabolismo , Animais , Biomarcadores , Comunicação Celular/fisiologia , Portadores de Fármacos/metabolismo , Portadores de Fármacos/toxicidade , Estabilidade de Medicamentos , Humanos , Sistemas de Liberação de Fármacos por Nanopartículas/metabolismo , Sistemas de Liberação de Fármacos por Nanopartículas/farmacologia , Sistemas de Liberação de Fármacos por Nanopartículas/toxicidade
5.
Int J Pharm ; 611: 121330, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34864120

RESUMO

The oral bioavailability of many phenolic acid drugs is severely limited due to the high hydrophilicity and extensive first-pass effect induced by catechol-O-methyltransferase (COMT) metabolism. The present study investigated the inhibitory activity of the pharmaceutical excipients of extra virgin olive oil (EVOO) against COMT and evaluated the potential of a self-microemulsion loaded with a phospholipid complex containing EVOO for oral absorption enhancement of salvianolic acid B (SAB), a model phenolic acid. In vitro COMT assay showed that EVOO could effectively inhibit enzyme activity in the rat liver cytosol. Next, the SAB phospholipid complex/self-microemulsion containing EVOO (named SP-SME1) was prepared and characterized (particle size, 243.60 ± 6.96 nm and zeta potential, -23.67 ± -1.36 mV). The phospholipid complex/self-microemulsion containing ethyl oleate (EO) (named SP-SME2) was taken as the control group. Compared with free SAB, the apparent permeability coefficient (Papp value) of the two SP-SMEs significantly increased (12.0-fold and 10.90-fold). Pharmacokinetic study demonstrated that the AUC0-∞ value of SAB for the SP-SME1 group significantly increased by 4.72 and 2.82 times compared to those for free SAB (p < 0.001) and SP-SME2 (p < 0.01), respectively. Moreover, the AUC0-∞ value of monomethyl-SAB (metabolite of SAB, MMS) for the SP-SME1 group decreased by 0.83 times compared to that for SP-SME2. In conclusion, the EVOO-based phospholipid complex/self-microemulsion greatly enhanced the oral absorption of SAB, which was mainly attributed to the inhibition of COMT activity induced by EVOO.


Assuntos
Benzofuranos/metabolismo , Catecol O-Metiltransferase , Azeite de Oliva/química , Fosfolipídeos/química , Animais , Catecol O-Metiltransferase/metabolismo , Ratos
6.
Acta Pharm Sin B ; 11(9): 2880-2899, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34589402

RESUMO

Aberrant activation of NLRP3 inflammasome in colonic macrophages strongly associates with the occurrence and progression of ulcerative colitis. Although targeting NLRP3 inflammasome has been considered to be a potential therapy, the underlying mechanism through which pathway the intestinal inflammation is modulated remains controversial. By focusing on the flavonoid lonicerin, one of the most abundant constituents existed in a long historical anti-inflammatory and anti-infectious herb Lonicera japonica Thunb., here we report its therapeutic effect on intestinal inflammation by binding directly to enhancer of zeste homolog 2 (EZH2) histone methyltransferase. EZH2-mediated modification of H3K27me3 promotes the expression of autophagy-related protein 5, which in turn leads to enhanced autophagy and accelerates autolysosome-mediated NLRP3 degradation. Mutations of EZH2 residues (His129 and Arg685) indicated by the dynamic simulation study have found to greatly diminish the protective effect of lonicerin. More importantly, in vivo studies verify that lonicerin dose-dependently disrupts the NLRP3-ASC-pro-caspase-1 complex assembly and alleviates colitis, which is compromised by administration of EZH2 overexpression plasmid. Thus, these findings together put forth the stage for further considering lonicerin as an anti-inflammatory epigenetic agent and suggesting EZH2/ATG5/NLRP3 axis may serve as a novel strategy to prevent ulcerative colitis as well as other inflammatory diseases.

7.
Chem Sci ; 12(12): 4547-4556, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-34163720

RESUMO

Copper complexes are promising anticancer agents widely studied to overcome tumor resistance to metal-based anticancer drugs. Nevertheless, copper complexes per se encounter drug resistance from time to time. Adenosine-5'-triphosphate (ATP)-responsive nanoparticles containing a copper complex CTND and B-cell lymphoma 2 (Bcl-2) small interfering RNA (siRNA) were constructed to cope with the resistance of cancer cells to the complex. CTND and siRNA can be released from the nanoparticles in cancer cells upon reacting with intracellular ATP. The resistance of B16F10 melanoma cells to CTND was terminated by silencing the cellular Bcl-2 gene via RNA interference, and the therapeutic efficacy was significantly enhanced. The nanoparticles triggered a cellular autophagy that amplified the apoptotic signals, thus revealing a novel mechanism for antagonizing the resistance of copper complexes. In view of the extensive association of Bcl-2 protein with cancer resistance to chemotherapeutics, this strategy may be universally applicable for overcoming the ubiquitous drug resistance to metallodrugs.

8.
Int J Nanomedicine ; 16: 3581-3598, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079251

RESUMO

BACKGROUND: BF211, a derivative of bufalin (BF), shows significantly improved solubility and potent antitumor efficiency compared to BF. Unfortunately, the unwanted toxicity such as cardiotoxicity caused by unspecific distribution has hindered its clinical use. METHODS: PEGylated BF211 liposomes (BF211@Lipo) were designed and optimizely prepared based on the pre-prescription research. In vitro and in vivo cardiotoxicity was evaluated. In vivo pharmacokinetics and biodistribution of BF211@Lipo were investigated. In vivo antitumor activity and toxicity were evaluated in HepG2 cell xenograft models. The rapid-release triggered by Poloxamer 188 (P188) was assessed in vitro and in vivo. RESULTS: The optimized BF211@Lipo displayed a spherical morphology with a size of (164.6 ± 10.3) nm and a high encapsulation efficiency of (93.24 ± 2.15) %. The in vivo concentration-time curves of BF211 loaded in liposomes showed a prolonged half-life in plasma and increased tumor accumulation. No obvious abnormality in electrocardiograms was observed in guinea pigs even at 9 mg/kg. Moreover, to improve the efficient release of BF211@Lipo, a surfactant-assisted rapid-release strategy was developed, and the release-promoting mechanism was revealed by the fluorescence resonance energy transfer (FRET) and fluorescence nanoparticle tracking analysis (fl-NTA) technology. Sequential injection of BF211@Lipo and P188 could ignite the "cold" liposomes locally in tumor regions, facilitating the burst release of BF211 and enhancing the therapeutic index. CONCLUSION: Our progressive efforts that begin with preparation technology and dosage regimen enable BF211 to like a drug, providing a promising nano platform to deliver the cardiac glycosides and alleviate the side effects by decreasing unspecific biodistribution.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Bufanolídeos/administração & dosagem , Bufanolídeos/farmacologia , Coração/efeitos dos fármacos , Tensoativos/química , Animais , Antineoplásicos/química , Antineoplásicos/toxicidade , Bufanolídeos/química , Bufanolídeos/toxicidade , Cobaias , Células Hep G2 , Humanos , Lipossomos , Nanopartículas/química , Poloxâmero/química , Solubilidade , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Int J Nanomedicine ; 16: 1575-1586, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33664572

RESUMO

BACKGROUND: Exosomes are a type of membrane vesicles secreted by living cells. Recent studies suggest exosome-like nanovesicles (ELNVs) from fruits and vegetables are involved in tissue renewal process and functional regulation against inflammatory diseases or cancers. However, there are few reports on ELNVs derived from medicinal plants. METHODS: ELNVs derived from Asparagus cochinchinensis (Lour.) Merr. (ACNVs) were isolated and characterized. Cytotoxicity, antiproliferative and apoptosis-inducing capacity of ACNVs against hepatoma carcinoma cell were assessed. The endocytosis mechanism of ACNVs was evaluated on Hep G2 cells in the presence of different endocytosis inhibitors. In vivo distribution of ACNVs was detected in healthy and tumor-bearing mice after scavenger receptors (SRs) blockade. PEG engineering of ACNVs was achieved through optimizing the pharmacokinetic profiles. In vivo antitumor activity and toxicity were evaluated in Hep G2 cell xenograft model. RESULTS: ACNVs were isolated and purified using a differential centrifugation method accompanied by sucrose gradient ultracentrifugation. The optimized ACNVs had an average size of about 119 nm and showed a typical cup-shaped nanostructure containing lipids, proteins, and RNAs. ACNVs were found to possess specific antitumor cell proliferation activity associated with an apoptosis-inducing pathway. ACNVs could be internalized into tumor cells mainly via phagocytosis, but they were quickly cleared once entering the blood. Blocking the SRs or PEGylation decoration prolonged the blood circulation time and increased the accumulation of ACNVs in tumor sites. In vivo antitumor results showed that PEGylated ACNVs could significantly inhibit tumor growth without side effects. CONCLUSION: This study provides a promising functional nano platform derived from edible Asparagus cochinchinensis that can be used in antitumor therapy with negligible side effects.


Assuntos
Asparagaceae/química , Carcinoma Hepatocelular/patologia , Exossomos/metabolismo , Neoplasias Hepáticas/patologia , Nanopartículas/química , Nanotecnologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/efeitos adversos , Nanopartículas/ultraestrutura , Polietilenoglicóis/química , Distribuição Tecidual/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Nano Lett ; 20(7): 4842-4849, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32578994

RESUMO

Development of T1/T2 dual-mode MRI contrast agents that can also treat cancer is an attractive prospect for personalized precision medicine. Unfortunately, conventional contrast agents can suffer from toxicity and lack any ability to treat cancer. An all-iron T1/T2 MR imaging agent with photothermal and drug delivery capability would overcome these issues. Here, an avocado-like Fe3+/Fe2O3 composed T1-T2 dual-mode contrast agent based on Fe-TA coordination network (CNMN) is developed. This material possesses suitable longitudinal and transverse relaxation coefficients. Moreover, the strong heat generation property of Fe-TA endows CNMN with the capability to act as a potent photothermal agent. Furthermore, CNMN can also act as an effective delivery platform for the chemotherapeutic drug doxorubicin (DOX) to achieve high effective chemo-photothermal combination therapy. The work demonstrates reliable T1-T2 MRI-guided chemo-photothermal therapy for safe and effective clinical application.


Assuntos
Nanopartículas , Neoplasias , Persea , Doxorrubicina/uso terapêutico , Ferro , Imageamento por Ressonância Magnética , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Fototerapia , Medicina de Precisão
11.
J Mater Chem B ; 8(22): 4841-4845, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32108202

RESUMO

We herein report a hybrid nanocomposite (AuNRs-CTN@THA) which is based on hyaluronic acid-coated gold nanorods with loading of a copper complex through strong bonds. AuNRs-CTN@THA exhibits durable photothermal conversion capacity for pH-dominant and pH/temperature dual sensitive drug release, accomplishing synergetic antitumor efficacy and deep tumor penetration.


Assuntos
Antineoplásicos/farmacologia , Cobre/farmacologia , Ouro/farmacologia , Ácido Hialurônico/farmacologia , Terapia Fototérmica , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cobre/química , Ensaios de Seleção de Medicamentos Antitumorais , Ouro/química , Ácido Hialurônico/química , Camundongos , Nanotubos/química , Tamanho da Partícula , Propriedades de Superfície
12.
Nanomedicine ; 21: 102068, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31374249

RESUMO

Colon adenocarcinoma is the third most common cause of cancer-related deaths worldwide owing to its aggressive nature. Here, we developed a novel oral drug delivery system (DDS) that comprised active targeted nanoparticles made from gelatin and chitosan (non-toxic polymers). The nanoparticles were fabricated using a complex coacervation method, which was accompanied by conjugation of wheat germ agglutinin (WGA) onto their surface by glutaraldehyde cross-linking. Specifically, we integrated 5-fluorouracil (5-FU), the first-line treatment agent against colon cancer, and (-)-epigallocatechin-3-gallate (EGCG), which inhibits tumor growth via anti-angiogenesis and apoptosis-inducing effects, into the nanoparticles, named WGA-EF-NP. The 5-FU and EGCG co-loaded nanoparticles showed sustained drug release, enhanced cellular uptake, and longer circulation time. WGA-EF-NP exhibited superior anti-tumor activity and pro-apoptotic efficacy compared to the drugs and nanoparticles without WGA decoration owing to better bioavailability and longer circulation time in vivo. Thus, WGA-EF-NP shows promise as a DDS for enhanced efficacy against colon cancer.


Assuntos
Apoptose/efeitos dos fármacos , Catequina/análogos & derivados , Neoplasias do Colo , Fluoruracila , Nanoconjugados , Neovascularização Patológica , Aglutininas do Germe de Trigo , Animais , Catequina/química , Catequina/farmacocinética , Catequina/farmacologia , Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Fluoruracila/química , Fluoruracila/farmacocinética , Fluoruracila/farmacologia , Células HT29 , Humanos , Camundongos , Nanoconjugados/química , Nanoconjugados/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Aglutininas do Germe de Trigo/química , Aglutininas do Germe de Trigo/farmacocinética , Aglutininas do Germe de Trigo/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Acta Biomater ; 94: 435-446, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31216493

RESUMO

Metallic materials are widely emerging as photothermal agents owing to their superior photothermal transduction efficiency and satisfactory photostability. In this study, an iron-based coordination polymer (Fe-CNP) loaded with doxorubicin (DOX) was assessed as a dual-function agent for photothermal therapy (PTT) and tumor-targeted chemotherapy. Fe-CNPs were synthesized by a one-step coordination reaction between Fe3+, hydrocaffeic acid, and dopamine-modified hyaluronic acid. A drug-loading method was developed to entrap DOX within Fe-CNPs through the formation of coordination bonds by Fe3+ and DOX (Scheme 1). DOX release was rapidly triggered in the cellular acidic environment and further enhanced by hyperpyrexia in the part of tumor, which will kill the remaining tumor cells after PTT. Animal experiments demonstrated complete inhibition of tumor growth without recurrence in 21 days after injection of DOX@Fe-CNPs with NIR laser irradiation. These results confirmed the enhanced anti-tumor efficiency of the chemo-photothermal nanosystem. Our work may reveal a photothermal coordination polymer as a drug-loading framework and highlight the development of metal-organic materials in combined chemo-photothermal therapy. STATEMENT OF SIGNIFICANCE: Photothermal therapy (PTT), which could directly act on tumors, has been considered as a promising treatment method for cancer. The combination of PTT with chemotherapy is attracting tremendous attention because such advanced application can achieve personalized precise medicine. Unfortunately, most PTT materials have photobleaching property, which results in reduced photothermal efficiency. Furthermore, their clinical applications also suffer from low loading capacity of chemotherapeutic drugs or nonbiodegradability in the biological system. In this study, we hypothesized that iron-based coordination polymers (Fe-CNPs) could function dually as agents to deliver both PTT and tumor-targeted chemotherapy by coordination loading of the chemotherapeutic drug doxorubicin (DOX). Our work may open up new avenues to rationally design versatile platforms for photothermal-chemotherapy to obtain synergistically enhanced therapeutic efficacy.


Assuntos
Complexos de Coordenação , Doxorrubicina , Portadores de Fármacos , Hipertermia Induzida , Neoplasias Experimentais , Fototerapia , Animais , Complexos de Coordenação/química , Complexos de Coordenação/farmacocinética , Complexos de Coordenação/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Camundongos , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia
14.
Colloids Surf B Biointerfaces ; 174: 270-279, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30469048

RESUMO

Paclitaxel-betulinic acid hybrid nanosuspensions (PTX-BA-NP) with increased anti-breast cancer activity were developed. The resultant nanosuspensions (NP) had a mean particle size of 282.54 ± 5.4 nm, a polydispersity index of approximately 0.242 ± 0.02, a zeta potential of -19.7 ± 0.19 mV and a redispersibility index of 103.3 ± 0.01%. The cumulative dissolution percentage of PTX coarse powder and PTX-BA-NP dried powder at 60 min were 15.4% and 90.8%, respectively. MCF-7 cell-based testing showed that treatment with PTX-BA-NP led to more PTX-BA-NP accumulation in the cytoplasm of breast cancer cells, less cell cycle arrest in the G2-M phase, more cell cycle arrest in the G0-G1 phase, more apoptosis-induced cell death and stronger inhibition of cell migration than paclitaxel nanosuspensions (PTX-NP). Biodistribution studies showed that tumor accumulation levels at 12 h in the PTX-BA-NP group were approximately 2.67- and 2.33-fold higher than the levels in the Taxol® and PTX-NP groups, respectively. In vivo antitumor efficacy demonstrated that PTX-BA-NP exerted the strongest tumor inhibition among the four groups, with a tumor inhibition rate of 47.79 ± 2.28%, followed by PTX-NP (35.05 ± 5.55%), Taxol® (22.67 ± 6.01%) and betulinic acid nanosuspension (BANP) (14.38 ± 6.02%). These findings indicate that PTX-BA-NP holds great promise for breast cancer therapy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Nanopartículas/química , Paclitaxel/farmacologia , Triterpenos/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Paclitaxel/química , Triterpenos Pentacíclicos , Relação Estrutura-Atividade , Distribuição Tecidual , Triterpenos/química , Ácido Betulínico
15.
ACS Appl Mater Interfaces ; 10(5): 4569-4581, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29336144

RESUMO

Melittin (Mel), one of the host defense peptides derived from the venom of honeybees, demonstrates substantial anticancer properties, which is attributed to augmenting reactive oxygen species (ROS) generation. However, little has been reported on its pro-oxidation capacity in cancer oxidation therapy. In this study, an ROS amplifying nanodevice was fabricated through direct complexation of two natural pro-oxidants, Mel and condensed epigallocatechin gallate (pEGCG). The obtained nanocomplex (NC) was further covered with phenylboronic acid derivatized hyaluronic acid (pHA) through the ROS-responsive boronate ester coordination bond to produce pHA-NC. Upon undergoing receptor-mediated endocytosis into cancer cells, the inner cores of pHA-NC will be partially uncovered once pHA corona is degraded by hyaluronidase and will then escape from the lysosome by virtue of cytolytic Mel. The elevated ROS level in the tumor cytoplasm can disrupt the boronate ester bond to facilitate drug release. Both Mel and pEGCG could synergistically amplify oxidative stress and prolong ROS retention in cancer cells, leading to enhanced anticancer efficacy. This ROS cascade amplifier based on selective coordination bond and inherent pro-oxidation properties of natural ingredients could detect and elevate intracellular ROS signals, potentiating to move the tumor away from its homeostasis and make the tumor vulnerable. Compared to previously reported chemosynthetic pro-oxidants, the ROS self-sufficient system, fully composed of natural medicine, from this study provides a new insight in developing cancer oxidation therapy.


Assuntos
Neoplasias , Animais , Morte Celular , Nanoestruturas , Oxirredução , Estresse Oxidativo , Peptídeos , Espécies Reativas de Oxigênio
16.
J Drug Target ; 26(1): 75-85, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28583001

RESUMO

Multidrug resistance (MDR) severely hinders the efficient chemotherapeutic treatments of cancer. d-α-Tocopherol polyethylene 1000 succinate (TPGS) based drug delivery system holds the potential of re-sensitizing resistant cancer cells. In this study, a TPGS prodrug containing both TPGS and mitoxantrone (MTO) via a disulphide bond was synthesised and assembled into micelle (TSMm) with a monodispersed diameter of 46.50 ± 1.12 nm. The disulphide bonds within the micelles could be cleaved in response to a high concentration of intracellular glutathione (GSH) after entering the tumour cells, leading a rapid release of MTO. In vitro cytotoxicity study showed TSMm significantly inhibited the growth of resistant breast tumour cells MDA-MB-231/MDR comparing to either free MTO or disulphide-free prodrug micelle (TCMm). In addition, TSMm could sustain favourable intracellular retention and cause the depletion of ATP activity, leading to the preferential transportation of MTO into the nucleus and the reversal of MDR. In vivo imaging also verified that TSMm was specifically targeted to the tumour regions at 24 h post injection. Finally, TSMm has significantly stronger antitumor activity in xenograft nude mice with negligible side effects. Hence, TSMm can serve as promising prodrug candidates to strengthen the reversal of MDR in tumours with less side effects.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Micelas , Mitoxantrona/farmacologia , Pró-Fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Nus , Mitoxantrona/administração & dosagem , Mitoxantrona/química , Estrutura Molecular , Oxirredução , Vitamina E/administração & dosagem
17.
Drug Dev Res ; 78(6): 283-291, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28815721

RESUMO

Preclinical Research Doxorubicin (DOX) is commonly used for the treatment of breast cancer and lymphoma. However, its clinical use has been severely limited due to cardiotoxicity, requiring the development of safer and more efficient pharmaceutical formulations of DOX. Advances in nanotechnology have provided new ways to administer chemotherapeutic drugs like DOX are conveyed into the body and to tumor sites. These Nanotechnology approaches have aided in the selective accumulation of DOX into tumor sites via the enhanced permeability and retention. However, the absence of active targeting ligands still hinders the effective delivery of DOX. Among all active targeting ligands developed to date, RGD peptide (Arginylglycylaspartic acid) occupies a unique position owing to its inherent safety, biocompatibility, and targeting ability. Accordingly, modification of DOX with RGD ligand is anticipated to improve transport of DOX into tumor cells. In this review, we discuss using RGD peptide for improving the therapeutic efficacy of DOX nanomedicine. Drug Dev Res 78 : 283-291, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Antineoplásicos/uso terapêutico , Doxorrubicina/uso terapêutico , Oligopeptídeos/química , Animais , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/química , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Nanomedicina
18.
J Control Release ; 261: 126-137, 2017 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-28666728

RESUMO

The present study reports a drug delivery system comprising nanostructured lipid carrier (NLCs) within liposomes (Lip-NLCs). This multiple lipid carrier complex features laser-triggered responsive drug release. Both hydrophobic and hydrophilic drugs can be loaded into the same formulation by applying an all-in-one strategy. We hypothesized that if we loaded the hydrophobic near-infrared (NIR) dye IR780 into the liposome phospholipid bilayer, the bilayer would be disrupted by laser irradiation so that drug release would be triggered remotely at the tumor site. We used in vitro and in vivo methods to verify that laser irradiation facilitated controlled release of both hydrophobic and hydrophilic drugs. The degree of drug release triggered by NIR laser light could be adjusted by varying the laser intensity and irradiation time. Following laser treatment, hydrophilic AMD3100 was released from the aqueous liposome chamber and then bound with CXCR4 receptors on the tumor cell surface to inhibit metastasis. NLCs carrying lipophilic IR780 were also released from the aqueous chamber of liposomes and taken up into tumor cells to enhance the photothermal therapeutic effect of IR780. More importantly, Lip-NLCs loaded with IR780 and AMD3100 (IR780-AMD-Lip-NLCs) exhibited enhanced anti-tumor and anti-metastasis effects. These results suggest that Lip-NLCs are a safe and simply prepared all-in-one platform for delivery of drugs with different solubilities. This system facilitates easily controlled release of cargoes to achieve multi-functional combined therapy.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Raios Infravermelhos , Lipídeos/química , Animais , Benzilaminas , Neoplasias da Mama/patologia , Ciclamos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Feminino , Compostos Heterocíclicos/administração & dosagem , Compostos Heterocíclicos/química , Interações Hidrofóbicas e Hidrofílicas , Indóis/administração & dosagem , Indóis/química , Lipossomos , Camundongos , Camundongos Endogâmicos BALB C , Nanoestruturas , Metástase Neoplásica/prevenção & controle
19.
Int J Nanomedicine ; 12: 1033-1046, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28223797

RESUMO

Andrographolide (ADG) is a diterpenoid isolated from Andrographis paniculata with a wide spectrum of biological activities, including anti-inflammatory, anticancer and hepatoprotective effects. However, its poor water solubility and efflux by P-glycoprotein have resulted in lower bioavailability. In this study, ADG nanosuspensions (ADG-NS) were prepared using a wet media milling technique followed by freeze drying. d-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS), a surfactant that inhibits P-glycoprotein function, and sodium lauryl sulfate were used as surface stabilizers. A Box-Behnken design was used to optimize the nanosuspension preparation. The products of these optimal preparation conditions were amorphous and possessed much faster dissolution in vitro than a coarse powder of ADG. The particle size and redispersibility index of the freeze-dried ADG-NS were 244.6±3.0 nm and 113%±1.14% (n=3), respectively. A short-term stability study indicated that the freeze-dried ADG-NS could remain highly stable as nanosuspensions during the testing period. A test of transport across a Caco-2 cell monolayer revealed that the membrane permeability (Papp) of ADG-NS was significantly higher than the permeability of the ADG coarse powder or ADG-NS without TPGS (P<0.01). Compared to the ADG coarse powder, a physical mixture, commercial dripping pills and ADG-NS without TPGS, ADG-NS exhibited significantly higher plasma exposure with significant enhancements in Cmax and area under the curve of plasma concentration versus time from zero to the last sampling time (AUC0-t ) (P<0.01). An evaluation of the anti-inflammatory effect on Carr-induced paw edema demonstrated that the ADG-NS were more effective in reducing the rate of paw swelling, producing a greater increase in the serum levels of nitric oxide (NO), Interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α) (P<0.01) and an increase in superoxide dismutase activity (P<0.05) compared to the ADG coarse powder. This study indicated that nanosuspensions could act as an effective delivery device for ADG to enhance its oral bioavailability and biological efficacy.


Assuntos
Diterpenos/farmacologia , Nanopartículas/química , Nanotecnologia/métodos , Dodecilsulfato de Sódio/química , Vitamina E/química , Administração Oral , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Transporte Biológico , Células CACO-2 , Diterpenos/administração & dosagem , Diterpenos/sangue , Diterpenos/farmacocinética , Humanos , Interleucina-1/sangue , Masculino , Camundongos , Nanopartículas/ultraestrutura , Óxido Nítrico/sangue , Tamanho da Partícula , Ratos Sprague-Dawley , Solubilidade , Superóxido Dismutase/sangue , Suspensões , Fatores de Tempo , Fator de Necrose Tumoral alfa/sangue
20.
Adv Healthc Mater ; 6(8)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28187243

RESUMO

The ability to escape endo/lysosomal trafficking is critically important to prevent entrapment of nanomedicines in lysosomes and to achieve maximum therapeutic efficacy of drugs delivered to cells through endocytosis. In this study, a novel pH-sensitive chitosan carrier with the ability to reverse its charge during endo/lysosomal trafficking is developed as a way of improving lysosomal disruption. N-Arginine-N-octyl chitosan (AOCS) is synthesized by grafting l-arginine onto carboxymethyl chitosan. The AOCS is used to modify the surface of nanostructured lipid carriers (NLC) to prepare pH-sensitive charge-reversal lysosomolytic nanocarriers (ANLC). The ANLC is loaded with 10-hydroxycamptothecin (HCPT). The results show that ANLC is able to reverse surface zeta potential from negative to positive at lysosomal pH, which contributes to improved release of encapsulated drugs into cytoplasm. The lysosomolytic capability of ANLC is confirmed by confocal microscopy and transmission electron microscopy. In vitro studies demonstrate that the anticancer activity of HCPT-loaded ANLC is improved when compared with HCPT-NLC and free HCPT. In vivo pharmacokinetics and tissue distribution analysis show improved delivery of HCPT-ANLC to subcutaneous Heps mouse liver tumors and greatly improved antitumor activity. The results present ANLC as a promising drug delivery carrier for improved antitumor therapy.


Assuntos
Antineoplásicos , Arginina , Camptotecina/análogos & derivados , Quitosana , Portadores de Fármacos , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Nanoestruturas/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Arginina/química , Arginina/farmacocinética , Arginina/farmacologia , Camptotecina/química , Camptotecina/farmacocinética , Camptotecina/farmacologia , Quitosana/química , Quitosana/farmacocinética , Quitosana/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA