Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurosci Lett ; 799: 137118, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36764479

RESUMO

Oxidative stress induced by amyloid-ß (Aß) has been considered as one of the important mechanisms in the development of Alzheimer disease (AD). The inhibition of endogenous antioxidant Nrf2 signaling in the brain of AD patients aggravates the oxidative damage, however, the causes of Nrf2 signaling inhibition are unclear. It is reported that smallubiquitin-like modification (SUMOylation) is involved in the process of oxidative injury. To investigate whether and how SUMOylation was involved in the inhibition of Nrf2 signaling pathway induced by Aß, Aß intrahippocampal injection rat model and Aß treated SH-SY5Y cell model were used in the current study. Small interfering RNA and lentivirus transfection were used to intervene SUMOylation, and the level of SUMOylation was assessed by immunoprecipitation. The present in vivo and in vitro studies revealed that SUMOylation levels of Nrf2 and MafF, as well as the overall SUMOylation level were reduced under long-term Aß insult. Meanwhile, the binding of Nrf2 to MafF was decreased, accompanied by low interaction with antioxidant response element (ARE) area of gene. Down-regulation of SUMO protein exacerbated the Aß-induced inhibition of Nrf2 signaling pathway, while, enhancement of SUMOylation of Nrf2 and MafF by overexpression of Ubc9 reversed this process. These results imply that reduction in SUMOylation induced by Aß contributed to the inhibition of Nrf2 signaling, and SUMOylation might be a potential therapeutic target of AD.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Ratos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Sumoilação , Peptídeos beta-Amiloides/metabolismo , Estresse Oxidativo , Doença de Alzheimer/metabolismo , Transdução de Sinais
2.
Molecules ; 27(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36558097

RESUMO

Chinese Herbal Medicines (CHMs) can be identified by experts according to their odors. However, the identification of these medicines is subjective and requires long-term experience. The samples of Acanthopanacis Cortex and Periplocae Cortex used were dried cortexes, which are often confused in the market due to their similar appearance, but their chemical composition and odor are different. The clinical use of the two herbs is different, but the phenomenon of being confused with each other often occurs. Therefore, we used an electronic nose (E-nose) to explore the differences in odor information between the two species for fast and robust discrimination, in order to provide a scientific basis for avoiding confusion and misuse in the process of production, circulation and clinical use. In this study, the odor and volatile components of these two medicinal materials were detected by the E-nose and by gas chromatography-mass spectrometry (GC-MS), respectively. An E-nose combined with pattern analysis methods such as principal component analysis (PCA) and partial least squares (PLS) was used to discriminate the cortex samples. The E-nose was used to determine the odors of the samples and enable rapid differentiation of Acanthopanacis Cortex and Periplocae Cortex. GC-MS was utilized to reveal the differences between the volatile constituents of Acanthopanacis Cortex and Periplocae Cortex. In all, 82 components including 9 co-contained components were extracted by chromatographic peak integration and matching, and 24 constituents could be used as chemical markers to distinguish these two species. The E-nose detection technology is able to discriminate between Acanthopanacis Cortex and Periplocae Cortex, with GC-MS providing support to determine the material basis of the E-nose sensors' response. The proposed method is rapid, simple, eco-friendly and can successfully differentiate these two medicinal materials by their odors. It can be applied to quality control links such as online detection, and also provide reference for the establishment of other rapid detection methods. The further development and utilization of this technology is conducive to the further supervision of the quality of CHMs and the healthy development of the industry.


Assuntos
Nariz Eletrônico , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Análise Multivariada , Controle de Qualidade , Odorantes/análise , Compostos Orgânicos Voláteis/análise
3.
Nat Commun ; 13(1): 7215, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36433955

RESUMO

Tumour cell metabolic plasticity is essential for tumour progression and therapeutic responses, yet the underlying mechanisms remain poorly understood. Here, we identify Prospero-related homeobox 1 (PROX1) as a crucial factor for tumour metabolic plasticity. Notably, PROX1 is reduced by glucose starvation or AMP-activated protein kinase (AMPK) activation and is elevated in liver kinase B1 (LKB1)-deficient tumours. Furthermore, the Ser79 phosphorylation of PROX1 by AMPK enhances the recruitment of CUL4-DDB1 ubiquitin ligase to promote PROX1 degradation. Downregulation of PROX1 activates branched-chain amino acids (BCAA) degradation through mediating epigenetic modifications and inhibits mammalian target-of-rapamycin (mTOR) signalling. Importantly, PROX1 deficiency or Ser79 phosphorylation in liver tumour shows therapeutic resistance to metformin. Clinically, the AMPK-PROX1 axis in human cancers is important for patient clinical outcomes. Collectively, our results demonstrate that deficiency of the LKB1-AMPK axis in cancers reactivates PROX1 to sustain intracellular BCAA pools, resulting in enhanced mTOR signalling, and facilitating tumourigenesis and aggressiveness.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias , Humanos , Aminoácidos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Transformação Celular Neoplásica , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Serina-Treonina Quinases TOR , Fatores de Transcrição/metabolismo
4.
Hepatology ; 73(2): 692-712, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32374916

RESUMO

BACKGROUND AND AIMS: The wide prevalence of chemoresistance and compromised early diagnosis of gallbladder cancer (GBC) has led to poor patient prognosis, requiring sustained efforts for the identification of effective biomarkers and therapeutic intervention. Ceramides have emerged as intracellular signaling molecules linked to tumorigenesis and therapeutic response in cancers. However, the clinical relevance of ceramides with GBC has not been investigated. APPROACH AND RESULTS: In the present study, we revealed aberrant gene expressions (e.g., serine palmitoyltransferase 1 [SPTLC1] and ceramide synthase 2 [CERS2]) of de novo ceramide biosynthesis and length-specific ceramide production in GBC tissues. Analyses of serum ceramide pattern in healthy controls, gallbladder stone, and GBC patients identified C24-Ceramide as a potential diagnostic biomarker for patients with GBC. Importantly, elevation of SPTLC1, CERS2, and its product, C24-Ceramide, was associated with tumor staging, distal metastasis, and worse prognosis. In line with this, C24 -Ceramide promoted GBC cell proliferation and migration in vitro and in vivo. Mechanistically, C24-Ceramide directly bound to phosphatidylinositol 5-phosphate 4-kinase type-2 gamma (PIP4K2C), a regulator of mammalian target of rapamycin (mTOR), to facilitate mTOR complex formation and activation. C6-Ceramide, an analogue of natural ceramide, competed with C24-Ceramide for PIP4K2C binding, thereby abrogating C24-Ceramide-mediated mTOR signaling activation and oncogenic activity. Furthermore, stimulation with C6-Ceramide significantly suppressed the proliferative and metastatic capacity of GBC cells in vitro and in vivo, which was dependent on PIP4K2C. CONCLUSIONS: Our findings highlight the clinical relevance of ceramide metabolism with GBC progression and identify C24-Ceramide as a diagnostic biomarker for GBC. We propose that PIP4K2C is indispensable for C6-Ceramide as a potential therapeutic intervention for GBC through a direct competition with C24-Ceramide.


Assuntos
Biomarcadores Tumorais/metabolismo , Ceramidas/metabolismo , Neoplasias da Vesícula Biliar/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Feminino , Vesícula Biliar/patologia , Neoplasias da Vesícula Biliar/diagnóstico , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/mortalidade , Humanos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Estadiamento de Neoplasias , Prognóstico , Serina C-Palmitoiltransferase/metabolismo , Esfingosina N-Aciltransferase/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cell Cycle ; 18(23): 3337-3350, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31599189

RESUMO

Gallbladder cancer (GBC) is the common malignancy of the bile tract system with extremely poor clinical outcomes, owing to its metastatic property and intrinsic resistance to the first-line drugs. Although it is well-established that cholesterol abnormity contributes to gallstone formation, a leading risk factor for GBC, the link of cholesterol homeostasis with GBC has not been investigated. The present study systematically examined the genes implicated in cholesterol homeostasis, and revealed altered gene expressions of de novo cholesterol biosynthesis and sterol sulfonation (SULT2B1), reduced bile acid synthesis (CYP7B1 and CYP39A1) and impaired sterol efflux (ABCA1, ABCG5, LCAT, and CETP) in GBC tissues. Suppression of cholesterol biosynthesis by lovastatin inhibited GBC cell proliferation possibly through attenuating the DNA repair process. Further investigation revealed lovastatin sensitized GBC cells to cisplatin-induced apoptosis and suppressed the activation of CHK1, CHK2, and H2AX during DNA damage response. By using chemically distinct statins, HMGCR depletion or supplementing mevalonate, the product of HMGCR, we showed the inhibitory effects on DNA repair process of lovastatin were due to the blockage of the mevalonate pathway. Subcutaneous xenograft mice model suggested lovastatin promoted the therapeutic efficacy of cisplatin, and significantly prolonged the survival times of tumor-bearing mice. Moreover, HMGCR ablation repressed tumor growth in vivo, which can be rescued partially by restored expression of HMGCR, suggesting the on-target effects of lovastatin. Therefore, our study provides the clinical relevance of cholesterol homeostasis with GBC progression, and highlights a novel intervention of combined use of lovastatin and cisplatin for GBC.


Assuntos
Colesterol/genética , Cisplatino/efeitos adversos , Neoplasias da Vesícula Biliar/tratamento farmacológico , Cálculos Biliares/tratamento farmacológico , Transportador 1 de Cassete de Ligação de ATP/genética , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Apoptose/efeitos dos fármacos , Colesterol/biossíntese , Proteínas de Transferência de Ésteres de Colesterol/genética , Cisplatino/farmacologia , Família 7 do Citocromo P450/genética , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Feminino , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/patologia , Cálculos Biliares/genética , Cálculos Biliares/patologia , Xenoenxertos , Humanos , Masculino , Camundongos , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Fatores de Risco , Esteroide Hidroxilases/genética , Sulfotransferases/genética
6.
Antiviral Res ; 162: 118-129, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30599174

RESUMO

Hepatitis B virus (HBV) envelopes as well as empty subviral particles carry in their lipid membranes the small (S), middle (M), and large (L) surface proteins, collectively known as hepatitis B surface antigen (HBsAg). Due to their common S domain all three proteins share a surface-exposed hydrophilic antigenic loop (AGL) with a complex disulfide bridge-dependent structure. The AGL is critical for HBV infectivity and virion secretion, and thus represents a major target for neutralizing antibodies. Previously, a human monoclonal antibody (mAb) targeting a conformational epitope in the AGL, IgG12, exhibited 1000-fold higher neutralizing activity than hepatitis B immune globulin (HBIG). Here we designed a single-chain variable fragment (scFv) homolog of IgG12, G12-scFv, which could be efficiently produced in soluble form in the cytoplasm of E. coli SHuffle cells. Independent in vitro assays verified specific binding of G12-scFv to a conformational S epitope shared with IgG12. Despite 20-fold lower affinity, G12-scFv but not an irrelevant scFv potently neutralized HBV infection of susceptible hepatoma cells (IC50 = 1.8 nM). Strikingly, low concentrations of G12-scFv blocked virion secretion from HBV producing cells (IC50 = 1.25 nM) without disturbing intracellular viral replication, whereas extracellular HBsAg was reduced only at >100-fold higher though still nontoxic concentration. The inhibitory effects correlated with S binding specificity and presumably also G12-scFv internalization into cells. Together these data suggest G12-scFv as a highly specific yet easily accessible novel tool for basic, diagnostic, and possibly future therapeutic applications.


Assuntos
Antígenos de Superfície da Hepatite B/imunologia , Vírus da Hepatite B/efeitos dos fármacos , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/farmacologia , Vírion/efeitos dos fármacos , Anticorpos Neutralizantes , Escherichia coli , Células Hep G2 , Vírus da Hepatite B/fisiologia , Humanos , Concentração Inibidora 50 , Anticorpos de Cadeia Única/biossíntese , Vírion/fisiologia , Replicação Viral/efeitos dos fármacos
7.
Toxicol Lett ; 302: 60-74, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30447258

RESUMO

BACKGROUND: Fine ambient particle matter (PM2.5) induces inflammatory lung injury; however, whether intratracheal administration of PM2.5 increases pulmonary polymorphonuclear leukocyte (PMN) infiltration, the mechanism of infiltration, and if these cells exacerbate PM2.5-induced lung injury are unknown. METHODS: Using 32,704 subjects, the association between blood PMNs and ambient PM2.5 levels on the previous day was retrospectively analyzed. Neutropenia was achieved by injecting mice with PMN-specific antibodies. Inhibition of PMN infiltration was achieved by pretreating PMNs with soluble vascular cell adhesion molecule-1 (sVCAM-1). The effects of PMNs on PM2.5-induced lung injury and endothelial dysfunction were observed. RESULT: Short-term PM2.5 (> 75 µg/m3 air) exposure increased the PMN/white blood cell ratio and the PMN count in human peripheral blood observed during routine examination. A significant number of PM2.5-treated PMNs was able to bind sVCAM-1. In mice, intratracheally-instilled PM2.5 deposited in the alveolar space and endothelial cells, which caused significant lung edema, morphological disorder, increased permeability of the endothelial-alveolar epithelial barrier, and PMN infiltration with increased VCAM-1 expression. Depletion of circulatory PMNs inhibited these adverse effects. Replenishment of untreated PMNs, but not those pretreated with soluble VCAM-1, restored lung injury. In vitro, PM2.5 increased VCAM-1 expression and endothelial and epithelial monolayer permeability, and promoted PMN adhesion to, chemotaxis toward, and migration across these monolayers. PMNs, but not those pretreated with soluble VCAM-1, exacerbated these effects. CONCLUSION: VCAM-1-mediated PMN infiltration was essential for a detrimental cycle of PM2.5-induced inflammation and lung injury. Results suggest that drugs that inhibit PMN function might prevent acute deterioration of chronic pulmonary and cardiovascular diseases triggered by PM2.5.


Assuntos
Lesão Pulmonar/induzido quimicamente , Pulmão/metabolismo , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Material Particulado , Edema Pulmonar/induzido quimicamente , Molécula 1 de Adesão de Célula Vascular/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Permeabilidade Capilar , Adesão Celular , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Pulmão/imunologia , Pulmão/patologia , Lesão Pulmonar/imunologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Neutropenia/imunologia , Neutropenia/metabolismo , Neutropenia/patologia , Neutrófilos/imunologia , Neutrófilos/patologia , Tamanho da Partícula , Edema Pulmonar/imunologia , Edema Pulmonar/metabolismo , Edema Pulmonar/patologia , Estudos Retrospectivos , Molécula 1 de Adesão de Célula Vascular/imunologia , Adulto Jovem
8.
Parasit Vectors ; 11(1): 604, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30477573

RESUMO

BACKGROUND: Acanthamoeba spp. can cause serious human infections, including Acanthamoeba keratitis, granulomatous amoebic encephalitis and cutaneous acanthamoebiasis. Cysteine biosynthesis and the L-serine metabolic pathway play important roles in the energy metabolism of Acanthamoeba spp. However, no study has confirmed the functions of cysteine synthase (AcCS) in the cysteine pathway and phosphoglycerate dehydrogenase (AcGDH) or phosphoserine aminotransferase (AcSPAT) in the non-phosphorylation serine metabolic pathway of Acanthamoeba. METHODS: The AcCS, AcGDH and AcSPAT genes were amplified by PCR, and their recombinant proteins were expressed in Escherichia coli. Polyclonal antibodies against the recombinant proteins were prepared in mice and used to determine the subcellular localisation of each native protein by confocal laser scanning microscopy. The enzymatic activity of each recombinant protein was also analysed. Furthermore, each gene expression level was analysed by quantitative PCR after treatment with different concentrations of cysteine or L-serine. RESULTS: The AcCS gene encodes a 382-amino acid protein with a predicted molecular mass of 43.1 kDa and an isoelectric point (pI) of 8.11. The AcGDH gene encodes a 350-amino acid protein with a predicted molecular mass of 39.1 kDa and a pI of 5.51. The AcSPAT gene encodes a 354-amino acid protein with a predicted molecular mass of 38.3 kDa and a pI of 6.26. Recombinant AcCS exhibited a high cysteine synthesis activity using O-acetylserine and Na2S as substrates. Both GDH and SPAT catalysed degradation, rather than synthesis, of serine. Exogenous L-serine or cysteine inhibited the expression of all three enzymes in a time- and dose-dependent manner. CONCLUSIONS: This study demonstrated that AcCS participates in cysteine biosynthesis and serine degradation via the non-phosphorylation serine metabolic pathway, providing a molecular basis for the discovery of novel anti-Acanthamoeba drugs.


Assuntos
Acanthamoeba castellanii/enzimologia , Acanthamoeba castellanii/genética , Cisteína/metabolismo , Redes e Vias Metabólicas/genética , Serina/metabolismo , Acanthamoeba castellanii/efeitos dos fármacos , Acanthamoeba castellanii/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Cisteína/biossíntese , Cisteína/farmacologia , Cisteína Sintase/genética , Cisteína Sintase/imunologia , Cisteína Sintase/metabolismo , Sistemas de Liberação de Medicamentos , Escherichia coli/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/genética , Glicólise , Camundongos , Microscopia Confocal , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Serina/biossíntese , Serina/farmacologia , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/imunologia , Desidrogenase do Álcool de Açúcar/metabolismo , Transaminases/genética , Transaminases/imunologia , Transaminases/metabolismo
9.
J Eukaryot Microbiol ; 65(2): 191-199, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28787535

RESUMO

Acanthamoeba spp. can be parasitic in certain situations and are responsible for serious human infections, including Acanthamoeba keratitis, granulomatous amoebic encephalitis, and cutaneous acanthamoebiasis. We analyzed the fatty acid composition of Acanthamoeba castellanii trophozoites and tested the inhibitory activity of the main fatty acids, oleic acid and arachidonic acid, in vitro. Oleic acid markedly inhibited the growth of A. castellanii, with trophozoite viability of 57.4% at a concentration of 200 µM. Caspase-3 staining and annexin V assays showed that apoptotic death occurred in A. castellanii trophozoites. Quantitative PCR and dot blot analysis showed increased levels of metacaspase and interleukin-1ß converting enzyme, which is also an indication of apoptosis. In contrast, arachidonic acid showed negligible inhibition of growth of A. castellanii trophozoites. Stimulated expression of Atg3, Atg8 and LC3A/B genes and monodansylcadaverine labeling suggested that oleic acid induces apoptosis by triggering autophagy of trophozoites.


Assuntos
Acanthamoeba castellanii/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ácido Oleico/farmacologia , Trofozoítos/efeitos dos fármacos , Acanthamoeba castellanii/genética , Autofagia , Caspase 3/genética
10.
Hepatology ; 63(3): 880-97, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26659654

RESUMO

UNLABELLED: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death. However, the underlying mechanism during hepatocarcinogenesis remains unclarified. Stable isotope labeling by amino acids in cell culture (SILAC) is a powerful quantitative strategy for proteome-wide discovery of novel biomarkers in cancers. Hippocalcin-like 1 (HPCAL1) is a calcium sensor protein. However, the biological function of HPCAL1 is poorly understood in cancers, including HCC. Herein, HPCAL1 was identified by SILAC as a novel hepatocarcinogenesis suppressor down-regulated in HCC cell lines and tissues. Importantly, lost expression of HPCAL1 was associated with worse prognosis of HCC patients. Interestingly, secreted HPCAL1 protein in the plasma dropped dramatically in HCC patients compared with healthy donors. Receiver operating characteristic curve analysis showed that serum HPCAL1 at a concentration of 8.654 ng/mL could better predict HCC. Furthermore, ectopic expression of HPCAL1 suppresses cell proliferation, while depletion of HPCAL1 led to increased cell growth both in vitro and in vivo. Mechanistically, HPCAL1 directly interacted with p21(Waf/Cip1) in the nucleus, which requires the EF-hand 4 motif of HPCAL1 and the Cy1 domain of p21. This interaction stabilized p21(Waf/Cip1) in an extracellular signal-regulated kinase 1/2-mitogen-activated protein kinase-dependent manner, which subsequently prevented p21(Waf/Cip1) proteasomal degradation by disrupting SCF(Skp2) and CRL4(Cdt2) E3 ligase complexes, resulting in increased protein stability and inhibitory effect of p21(Waf/Cip1). Notably, the tumor suppressive function of HPCAL1 was dependent on p21 in vitro and in vivo. Consistent with this observation, expression of HPCAL1 and p21(Waf/Cip1) was positively correlated in HCC tissues. CONCLUSION: These findings highlight a novel tumor suppressor upstream of p21(Waf/Cip1) in attenuating cell cycle progression and provide a promising diagnostic and prognostic factor, as well as a potential therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Neoplasias Hepáticas/metabolismo , Neurocalcina/metabolismo , Animais , Estudos de Casos e Controles , Ciclo Celular , Linhagem Celular Tumoral , Células HEK293 , Humanos , Marcação por Isótopo/métodos , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Proteínas Nucleares/metabolismo , Proteômica/métodos , Proteínas Quinases Associadas a Fase S/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA