Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 327(1): F146-F157, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38779753

RESUMO

17ß-Hydroxysteroid dehydrogenase-13 (HSD17B13), a newly identified lipid droplet-associated protein, plays an important role in the development of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Emerging evidence demonstrates that NASH is an independent risk factor for chronic kidney disease, which is frequently accompanied by renal lipid accumulation. In addition, the HSD17B13 rs72613567 variant is associated with lower levels of albuminuria in patients with biopsy-proven NAFLD. At present, the role of HSD17B13 in lipid accumulation in the kidney is unclear. This study utilized bioinformatic and immunostaining approaches to examine the expression and localization of HSD17B13 along the mouse urinary tract. We found that HSD17B13 is constitutively expressed in the kidney, ureter, and urinary bladder. Our findings reveal for the first time, to our knowledge, the precise localization of HSD17B13 in the mouse urinary system, providing a basis for further studying the pathogenesis of HSD17B13 in various renal and urological diseases.NEW & NOTEWORTHY HSD17B13, a lipid droplet-associated protein, is crucial in nonalcoholic fatty liver disease (NAFLD) development. NAFLD also independently raises chronic kidney disease (CKD) risk, often with renal lipid buildup. However, HSD17B13's role in CKD-related lipid accumulation is unclear. This study makes the first effort to examine HSD17B13 expression and localization along the urinary system, providing a basis for exploring its physiological and pathophysiological roles in the kidney and urinary tract.


Assuntos
17-Hidroxiesteroide Desidrogenases , Camundongos Endogâmicos C57BL , Animais , Masculino , Camundongos , 17-Hidroxiesteroide Desidrogenases/genética , 17-Hidroxiesteroide Desidrogenases/metabolismo , Rim/metabolismo , Rim/patologia , Sistema Urinário/metabolismo , Sistema Urinário/patologia
2.
Acta Pharmacol Sin ; 44(10): 2075-2090, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37344564

RESUMO

Renal fibrosis is a common pathological feature of chronic kidney disease (CKD) with various etiologies, which seriously affects the structure and function of the kidney. Pregnane X receptor (PXR) is a member of the nuclear receptor superfamily and plays a critical role in regulating the genes related to xenobiotic and endobiotic metabolism in mammals. Previous studies show that PXR is expressed in the kidney and has protective effect against acute kidney injury (AKI). In this study, we investigated the role of PXR in CKD. Adenine diet-induced CKD (AD) model was established in wild-type and PXR humanized (hPXR) mice, respectively, which were treated with pregnenolone-16α-carbonitrile (PCN, 50 mg/kg, twice a week for 4 weeks) or rifampicin (RIF, 10 mg·kg-1·d-1, for 4 weeks). We showed that both PCN and RIF, which activated mouse and human PXR, respectively, improved renal function and attenuated renal fibrosis in the two types of AD mice. In addition, PCN treatment also alleviated renal fibrosis in unilateral ureter obstruction (UUO) mice. On the contrary, PXR gene deficiency exacerbated renal dysfunction and fibrosis in both adenine- and UUO-induced CKD mice. We found that PCN treatment suppressed the expression of the profibrotic Wnt7a and ß-catenin in AD mice and in cultured mouse renal tubular epithelial cells treated with TGFß1 in vitro. We demonstrated that PXR was colocalized and interacted with p53 in the nuclei of tubular epithelial cells. Overexpression of p53 increased the expression of Wnt7a, ß-catenin and its downstream gene fibronectin. We further revealed that p53 bound to the promoter of Wnt7a gene to increase its transcription and ß-catenin activation, leading to increased expression of the downstream profibrotic genes, which was inhibited by PXR. Taken together, PXR activation alleviates renal fibrosis in mice via interacting with p53 and inhibiting the Wnt7a/ß-catenin signaling pathway.


Assuntos
Receptor de Pregnano X , Insuficiência Renal Crônica , Via de Sinalização Wnt , Animais , Humanos , Camundongos , beta Catenina/metabolismo , Fibrose , Mamíferos/metabolismo , Receptor de Pregnano X/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/tratamento farmacológico , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Rifampina/farmacologia
3.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166755, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37196860

RESUMO

Renal fibrosis (RF) is a common pathway leading to chronic kidney disease (CKD), which lacks effective treatment. While estrogen receptor beta (ERß) is known to be present in the kidney, its role in RF remains unclear. The present study aimed to investigate the role and underlying mechanism of ERß during RF progression in patients and animal models with CKD. We found that ERß was highly expressed in the proximal tubular epithelial cells (PTECs) in healthy kidneys but its expression was largely lost in patients with immunoglobin A nephropathy (IgAN) and in mice with unilateral ureter obstruction (UUO) and subtotal nephrectomy (5/6Nx). ERß deficiency markedly exacerbated, whereas ERß activation by WAY200070 and DPN attenuated RF in both UUO and 5/6Nx mouse models, suggesting a protective role of ERß in RF. In addition, ERß activation inhibited TGF-ß1/Smad3 signaling, while loss of renal ERß was associated with overactivation of the TGF-ß1/Smad3 pathway. Furthermore, deletion or pharmacological inhibition of Smad3 prevented the loss of ERß and RF. Mechanistically, activation of ERß competitively inhibited the association of Smad3 with the Smad-binding element, thereby downregulating the transcription of the fibrosis-related genes without altering Smad3 phosphorylation in vivo and in vitro. In conclusion, ERß exerts a renoprotective role in CKD by blocking the Smad3 signaling pathway. Thus, ERß may represent as a promising therapeutic agent for RF.


Assuntos
Insuficiência Renal Crônica , Obstrução Ureteral , Animais , Camundongos , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Fibrose , Rim/patologia , Insuficiência Renal Crônica/tratamento farmacológico , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA