Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther Oncol ; 32(2): 200813, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38817541

RESUMO

The immune response plays a crucial role in the functionality of oncolytic viruses. In this study, Albendazole, an antihelminthic drug known to modulate the immune checkpoint PD-L1, was combined with the oncolytic virus M1 (OVM1) to treat mice with either prostate cancer (RM-1) or glioma (GL261) tumors. This combination therapy enhanced anti-tumor effects in immunocompetent mice, but not in immunodeficient ones, without increasing OVM1 replication. Instead, it led to an increase in the number of CD8+ T cells within the tumor, downregulated the expression of PD1 on CD8+ T cells, and upregulated activation markers such as Ki67, CD44, and CD69 and the secretion of cytotoxic factors including interferon (IFN)-γ, granzyme B, and tumor necrosis factor (TNF)-α. Consistently, it enhanced the in vitro tumor-killing activity of lymphocytes from tumor-draining lymph nodes or spleens. The synergistic effect of Albendazole on OVM1 was abolished by depleting CD8+ T cells, suggesting a CD8+ T cell-dependent mechanism. In addition, Albendazole and OVM1 therapy increased CTLA4 expression in the spleen, and the addition of CTLA4 antibodies further enhanced the anti-tumor efficacy in vivo. In summary, Albendazole can act synergistically with oncolytic viruses via CD8+ T cell activation, and the Albendazole/OVM1 combination can overcome resistance to CTLA4-based immune checkpoint blockade therapy.

2.
Signal Transduct Target Ther ; 7(1): 100, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35393389

RESUMO

Over the last decade, oncolytic virus (OV) therapy has shown its promising potential in tumor treatment. The fact that not every patient can benefit from it highlights the importance for defining biomarkers that help predict patients' responses. As particular self-amplifying biotherapeutics, the anti-tumor effects of OVs are highly dependent on the host factors for viral infection and replication. By using weighted gene co-expression network analysis (WGCNA), we found matrix remodeling associated 8 (MXRA8) is positively correlated with the oncolysis induced by oncolytic virus M1 (OVM). Consistently, MXRA8 promotes the oncolytic efficacy of OVM in vitro and in vivo. Moreover, the interaction of MXRA8 and OVM studied by single-particle cryo-electron microscopy (cryo-EM) showed that MXRA8 directly binds to this virus. Therefore, MXRA8 acts as the entry receptor of OVM. Pan-cancer analysis showed that MXRA8 is abundant in most solid tumors and is highly expressed in tumor tissues compared with adjacent normal ones. Further study in cancer cell lines and patient-derived tumor tissues revealed that the tumor selectivity of OVM is predominantly determined by a combinational effect of the cell membrane receptor MXRA8 and the intracellular factor, zinc-finger antiviral protein (ZAP). Taken together, our study may provide a novel dual-biomarker for precision medicine in OVM therapy.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Microscopia Crioeletrônica , Humanos , Imunoglobulinas , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Vírus Oncolíticos/genética
3.
Viruses ; 13(6)2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207926

RESUMO

Gallid alpha-herpesvirus 1, also known as avian infectious laryngotracheitis virus (ILTV), continues to cause huge economic losses to the poultry industry worldwide. Similar to that of other herpesvirus-encoded proteins, the expression of viral genes encoded by ILTV is regulated by a cascade, and the underlying regulatory mechanism remains largely unclear. The viral immediate-early (IE) gene ICP4 plays a prominent role in the initiation of the transcription of early and late genes during ILTV replication. In this study, we identified AP-1 as the key regulator of the transcription of ILTV genes by bioinformatics analysis of genome-wide transcriptome data. Subsequent functional studies of the key members of the AP-1 family revealed that Fos, but not Jun, regulates ILTV infection through AP-1 since knockdown of Fos, but not Jun, by gene silencing significantly reduced ICP4 transcription and subsequent viral genome replication and virion production. Using several approaches, we identified ICP4 as a bona fide target gene of Fos that regulated Fos and has Fos response elements within its promoter. Neither the physical binding of Jun to the promoter of ICP4 nor the transcriptional activity of Jun was observed. In addition, knockdown of Fos reduced the transcription of MDH1 and ATP5A1, genes encoding two host rate-limiting enzymes essential for the production of the TCA intermediates OAA and ATP. The biological significance of the transcriptional regulation of MDH1 and ATP5A1 by Fos in ILTV infection was supported by the fact that anaplerosis of OAA and ATP rescued both ICP4 transcription and virion production in infected cells under when Fos was silenced. Our study identified the transcription factor Fos as a key regulator of ILTV infection through its transcription factor function on both the virus and host sides, improving the current understanding of both avian herpesvirus-host interactions and the roles of AP-1 in viral infection.


Assuntos
Regulação da Expressão Gênica , Infecções por Herpesviridae/veterinária , Herpesvirus Galináceo 1/fisiologia , Interações Hospedeiro-Patógeno , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/virologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Linhagem Celular , Galinhas , Biologia Computacional , Metabolismo Energético , Perfilação da Expressão Gênica , Genes Precoces , Interações Hospedeiro-Patógeno/genética , Modelos Biológicos , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/metabolismo , Replicação Viral
4.
J Virol ; 92(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29950417

RESUMO

Apoptosis is a common innate defense mechanism of host cells against viral infection and is therefore suppressed by many viruses, including herpes simplex virus (HSV), via various strategies. A recent in vivo study reported the apoptosis of remote uninfected cells during Gallid herpesvirus 1 (GaHV-1) infection, yet little is known about this previously unknown aspect of herpesvirus-host interactions. The aim of the present study was to investigate the apoptosis of uninfected host cells during GaHV-1 infection. The present study used in vitro and in ovo models, which avoided potential interference by host antiviral immunity, and demonstrated that this GaHV-1-host interaction is independent of host immune responses and important for both the pathological effect of viral infection and early viral dissemination from the primary infection site to distant tissues. Further, we revealed that GaHV-1 infection triggers this process in a paracrine-regulated manner. Using genome-wide transcriptome analyses in combination with a set of functional studies, we found that this paracrine-regulated effect requires the repression of p53 activity in uninfected cells. In contrast, the activation of p53 not only prevented the apoptosis of remote uninfected cells and subsequent pathological damage induced by GaHV-1 infection but also delayed viral dissemination significantly. Moreover, p53 activation repressed viral replication both in vitro and in ovo, suggesting that dual cell-intrinsic mechanisms underlie the suppression of GaHV-1 infection by p53 activation. This study uncovers the mechanism underlying the herpesvirus-triggered apoptosis of remote host cells and extends our understanding of both herpesvirus-host interactions and the roles of p53 in viral infection.IMPORTANCE It is well accepted that herpesviruses suppress the apoptosis of host cells via various strategies to ensure sustained viral replication during infection. However, a recent in vivo study reported the apoptosis of remote uninfected cells during GaHV-1 infection. The mechanism and the biological meaning of this unexpected herpesvirus-host interaction are unclear. This study uncovers the mechanisms of herpesvirus-triggered apoptosis in uninfected cells and may also contribute to a mechanistic illustration of paracrine-regulated apoptosis induced by other viruses in uninfected host cells.


Assuntos
Apoptose , Genes p53/genética , Herpesvirus Galináceo 1/fisiologia , Interações Hospedeiro-Patógeno/genética , Comunicação Parácrina/genética , Animais , Linhagem Celular Tumoral , Embrião de Galinha , Galinhas/virologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genoma Viral , Herpesvirus Galináceo 1/genética , Interações Hospedeiro-Patógeno/imunologia , Masculino , Comunicação Parácrina/imunologia , Organismos Livres de Patógenos Específicos
5.
J Biomech Eng ; 139(10)2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28753691

RESUMO

Homografts and synthetic grafts are used in surgery for congenital heart disease (CHD). Determining these materials' mechanical properties will aid in understanding tissue behavior when subjected to abnormal CHD hemodynamics. Homograft tissue samples from anterior/posterior aspects, of ascending/descending aorta (AA, DA), innominate artery (IA), left subclavian artery (LScA), left common carotid artery (LCCA), main/left/right pulmonary artery (MPA, LPA, RPA), and synthetic vascular grafts, were obtained in three orientations: circumferential, diagonal (45 deg relative to circumferential direction), and longitudinal. Samples were subjected to uniaxial tensile testing (UTT). True strain-Cauchy stress curves were individually fitted for each orientation to calibrate Fung model. Then, they were used to calibrate anisotropic Holzapfel-Gasser model (R2 > 0.95). Most samples demonstrated a nonlinear hyperelastic strain-stress response to UTT. Stiffness (measured by tangent modulus at different strains) in all orientations were compared and shown as contour plots. For each vessel segment at all strain levels, stiffness was not significantly different among aspects and orientations. For synthetic grafts, stiffness was significantly different among orientations (p < 0.042). Aorta is significantly stiffer than pulmonary artery at 10% strain, comparing all orientations, aspects, and regions (p = 0.0001). Synthetic grafts are significantly stiffer than aortic and pulmonary homografts at all strain levels (p < 0.046). Aortic, pulmonary artery, and synthetic grafts exhibit hyperelastic biomechanical behavior with anisotropic effect. Differences in mechanical properties among vascular grafts may affect native tissue behavior and ventricular/arterial mechanical coupling, and increase the risk of deformation due to abnormal CHD hemodynamics.


Assuntos
Aloenxertos , Aorta/fisiologia , Aorta/cirurgia , Artéria Pulmonar/fisiologia , Artéria Pulmonar/cirurgia , Estresse Mecânico , Enxerto Vascular , Adulto , Anisotropia , Fenômenos Biomecânicos , Simulação por Computador , Humanos , Hidrodinâmica , Pessoa de Meia-Idade , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA