Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1149191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251325

RESUMO

Nanohydrogels show great potential as efficient drug carriers due to their biocompatibility, low toxicity, and high water absorbability. In this paper, we prepared two O-carboxymethylated chitosan (OCMC)-based polymers functionalized with ß-cyclodextrin (ß-CD) and amino acid. The structures of the polymers were characterized by Fourier Transform Infrared (FTIR) Spectroscopy. Morphological study was carried out on a Transmission Electron Microscope (TEM), and the results indicated that the two polymers had irregular spheroidal structure with some pores distributed on their surface. The average particle diameter was below 500 nm, and the zeta potential was above +30 mV. The two polymers were further used for preparing nanohydrogels loaded with anticancer drugs lapatinib and ginsenoside Rg1, and the resulting nanohydrogels showed high drug loading efficiency and pH-sensitive (pH = 4.5) drug release behavior. In vitro cytotoxicity investigation revealed that the nanohydrogels exhibited high cytotoxicity against lung cancer (A549) cells. In vivo anticancer investigation was performed in a transgenic Tg(fabp10:rtTA2s-M2; TRE2:EGFP-kras V12) zebrafish model. The results showed that the synthesized nanohydrogels significantly inhibited the expression of EGFP-kras v12 oncogene in zebrafish liver, and the L-arginine modified OCMC-g-Suc-ß-CD nanohydrogels loading lapatinib and ginsenoside Rg1 showed the best results.

2.
Colloids Surf B Biointerfaces ; 224: 113215, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36841205

RESUMO

Camptothecin is a naturally occurred anticancer drug but exhibits limitations including poor aqueous solubility, low bioavailability, and high level of adverse drug reactions on normal organs. To overcome these problems, this paper developed a novel amphiphilic Lau-Leu-HES carrier using hydroxyethyl starch, lauric acid, and L-leucine as starting materials. The carrier was successfully applied to prepare Lau-Leu-HES nanoparticles loading camptothecin. The drug loading efficiency and encapsulation efficiency of the nanoparticles were calculated to be 29.04% and 81.85%, respectively. The nanoparticles exhibited high zeta potential (-15.51 mV) and small hydrodynamic diameter (105.4 nm). Camptothecin in nanoparticles could be rapidly released under acidic condition (pH = 4.5), thereby indicating the high sensitivity under cancer microenvironments. Anticancer investigation revealed that the nanoparticles could inhibit the proliferation of HepG2 cells in vitro. Compared with commercial available drug doxorubicin, the nanoparticles could significantly inhibit the expression of krasv12 oncogene in transgenic Tg (EGFP-krasV12) zebrafish. These results indicate that the camptothecin-loaded Lau-Leu-HES nanoparticles are expected to be a potential candidate for cancer therapy.


Assuntos
Camptotecina , Nanopartículas , Animais , Humanos , Camptotecina/farmacologia , Portadores de Fármacos , Peixe-Zebra , Proteínas Proto-Oncogênicas p21(ras) , Células Hep G2 , Amido , Sistemas de Liberação de Medicamentos/métodos
3.
Int J Nanomedicine ; 17: 1647-1657, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418754

RESUMO

Background: The leaves of L. japonica (LLJ) are widely used as medicine in China. It is rich in caffeoylquinic acids, flavonoids and iridoid glycosides and has strong reducing capacities. Therefore, it can be used as a green material to synthesize silver nanoparticles. Methods: LLJ was used as a reducing agent to produce the LLJ-mediated silver nanoparticles (LLJ-AgNPs). The structure and physicochemical properties of LLJ-AgNPs were characterized by ultraviolet spectroscopy (UV-Vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and x-ray powder diffraction (XRD). Antioxidant activity of LLJ-AgNPs was determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging. Antibacterial activity was determined by 96 well plates (AGAR) gradient dilution, while the anticancer potential was determined by MTT assay. Results: The results showed LLJ-AgNPs had a spherical structure with the maximum UV-Vis absorption at 400 nm. In addition, LLJ-AgNPs exhibited excellent antioxidant properties, where the free radical scavenging rate of LLJ-AgNPs was increased from 39% to 92% at concentrations from 0.25 to 1.0 mg/mL. Moreover, LLJ-AgNPs displayed excellent antibacterial properties against E. coli and Salmonella at room temperature, with minimum inhibitory values of 10-6 and 10-5 g/L, respectively. In addition, the synthetic LLJ-AgNPs exhibited a better inhibition effect in the proliferation of cancer cells (HepG2, MDA-MB -231, and Hela cells). Conclusion: The present study provides a green approach to synthesize LLJ-AgNPs. All those findings illustrated that the produced LLJ-AgNPs can be used as an economical and efficient functional material for further applications in food and pharmaceutical fields.


Assuntos
Lonicera , Nanopartículas Metálicas , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/química , Escherichia coli , Células HeLa , Humanos , Nanopartículas Metálicas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
4.
ACS Omega ; 6(2): 1119-1128, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33490771

RESUMO

pH- and temperature-sensitive nanogels (NGs) were prepared from sodium alginate (SA) and N-isopropylacrylamide (NIPAM), as the sensitivity at pH 5.5 and 31 °C. SA was pH-modified with glutamic acid (Glu) and ethylenediamine (EDA). The products Glu-SA (Glu-modified SA) and EGSA (EDA- and Glu-modified SA) were characterized by ninhydrin color reaction, infrared spectroscopy, and zeta potential, and the best reactant ratio was selected. Moreover, temperature-sensitive, pH-sensitive EGSA-NGs possessing a semi-interpenetrating network structure were prepared by radical polymerization using N-isopropylacrylamide. The morphology of EGSA-NGs was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The cytotoxicity test shows the low cytotoxicity and high biocompatibility of the NGs. The newly prepared NGs were also subjected to pH-sensitive temperature-sensitive in vitro drug-loading and drug-release experiments. The pH-sensitive and temperature-sensitive experiments showed that the particle size of EGSA-NGs was reduced at pH 5.5 and above 31 °C. The drug-loading and drug-release experiments also confirmed this finding, indicating that the newly synthesized NGs could release the drug according to the environmental changes. Therefore, the material has potential application value in solid tumor targeted therapy.

5.
ACS Omega ; 5(38): 24285-24295, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33015445

RESUMO

Many precedents prove that fluorescent probes are promising candidates for detection of metal ions in the environment and biological systems. Herein, two novel photoinduced electron transfer (PET)-based fluorescent probes, CH 3 -R6G and CN-R6G, were rationally synthesized by incorporating a triazolyl benzaldehyde moiety into the rhodamine 6G fluorophore. The optical properties of these probes were studied using an ultraviolet-visible (UV-vis) absorption spectrophotometer and a fluorescence spectrophotometer. Through the analysis of the test results, it is concluded that the selectivity and sensitivity of these two probes to Hg2+ are better than to other metal ions (Ag+, Al3+, Ba2+, Cd2+, Co3+, Cu2+, Cr3+, Fe3+, Ga2+, K+, Mg2+, Na+, Ni2+, Pb2+, and Zn2+). According to the standard curve diagram, the detection limits of CH 3 -R6G and CN-R6G were determined to be 1.34 × 10-8 and 1.56 × 10-8 M, respectively. Reaction of the probes with Hg2+ resulted in a color change of the solution from colorless to pink. The corresponding molecular geometric configuration, orbital electron distribution, and orbital energy of these two compounds were predicted by density functional theory (DFT). The two probes CH 3 -R6G and CN-R6G have been successfully used for imaging Hg2+ in live breast cancer cells, thereby indicating their great potential for the micro-detection of Hg2+ in vivo.

6.
Int J Med Mushrooms ; 22(3): 245-255, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32479019

RESUMO

Coprinus comatus, an edible and medicinal mushroom, not only tastes delicious, but also has various pharmacological activities. Recently, it has been reported that researchers have extracted more and more active ingredients, including polysaccharides, comatin, active protein complexes, and phenols from fruit bodies, mycelium, or fermentation liquor of C. comatus and studied their corresponding functions. At present, researchers mainly focus on the hypoglycemic effect of C. comatus, while other effects are less studied. This paper summarizes not only the hypoglycemic effect of C. comatus, but also other functions, such as antioxidant activity, alcohol liver protection, cancer inhibition, antiandrogenic function, anti-inflammatory effect, treatment of leukemia, and so on, which will provide scientific basis for the deep processing and comprehensive utilization of C. comatus.


Assuntos
Produtos Biológicos/farmacologia , Coprinus/química , Animais , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Produtos Biológicos/isolamento & purificação , Humanos , Hipoglicemiantes/farmacologia , Camundongos
7.
RSC Adv ; 10(2): 746-755, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35494443

RESUMO

Eight new cembrane-type diterpenoids, boscartins AH-AK (1-8), along with two known ones (9-10), were isolated from the gum resin of Boswellia carterii. Compounds 1-3 were characteristic of high oxidation assignable to three epoxy groups, while compounds 4-8 were characteristic of two epoxy groups. Spectroscopic examination was used to elucidate their structures. All isolates were evaluated for antiproliferative activity against HCT-116 human colon cancer cells, anti-inflammatory activity against nitric oxide (NO) production, and hepatoprotective activity in vitro. All of them showed weak antiproliferative activity (IC50 > 100 µM), 8 exhibited potent inhibitory effects on NO production (IC50 of 14.8 µM), with the others showing weak anti-inflammatory activity (IC50 > 30 µM), and 1 exhibited more potent hepatoprotective activity than the positive control, bicyclol, at 10 µM against the damage induced by paracetamol in HepG2 cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA