Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Autophagy ; : 1-21, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38873925

RESUMO

Thoracic aortic dissection (TAD) is a severe disease, characterized by numerous apoptotic vascular smooth muscle cells (VSMCs). EDIL3/Del-1 is a secreted protein involved in macrophage efferocytosis in acute inflammation. Here, we aimed to investigate whether EDIL3 promoted the internalization and degradation of apoptotic VSMCs during TAD. The levels of EDIL3 were decreased in the serum and aortic tissue from TAD mice. Global edil3 knockout (edil3-/-) mice and edil3-/- bone marrow chimeric mice exhibited a considerable exacerbation in ß-aminopropionitrile monofumarate (BAPN)-induced TAD, accompanied with increased apoptotic VSMCs accumulating in the damaged aortic tissue. Two types of phagocytes, RAW264.7 cells and bone marrow-derived macrophages (BMDMs) were used for in vitro efferocytosis assay. edil3-deficient phagocytes exhibited inefficient internalization and degradation of apoptotic VSMCs. Instead, EDIL3 promoted the internalization phase through interacting with phosphatidylserine (PtdSer) on apoptotic VSMCs and binding to the macrophage ITGAV/αv-ITGB3/ß3 integrin. In addition, EDIL3 accelerated the degradation phase through activating LC3-associated phagocytosis (LAP). Mechanically, following the engulfment, EDIL3 enhanced the activity of SMPD1/acid sphingomyelinase in the phagosome through blocking ITGAV-ITGB3 integrin, which facilitates phagosomal reactive oxygen species (ROS) production by NAPDH oxidase CYBB/NOX2. Furthermore, exogenous EDIL3 supplementation alleviated BAPN-induced TAD and promoted apoptotic cell clearance. EDIL3 may be a novel factor for the prevention and treatment of TAD.Abbreviations: BAPN: ß-aminopropionitrile monofumarate; BMDM: bone marrow-derived macrophage; C12FDG: 5-dodecanoylaminofluorescein-di-ß-D-galactopyranoside; CTRL: control; CYBB/NOX2: cytochrome b-245, beta polypeptide; DCFH-DA: 2',7'-dichlorofluorescin diacetate; EDIL3/Del-1: EGF-like repeats and discoidin I-like domains 3; EdU: 5-ethynyl-2'-deoxyuridine; EVG: elastic van Gieson; H&E: hematoxylin and eosin; IL: interleukin; LAP: LC3-associated phagocytosis; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; NAC: N-acetylcysteine; PtdSer: phosphatidylserine; rEDIL3: recombinant EDIL3; ROS: reactive oxygen species; SMPD1: sphingomyelin phosphodiesterase 1; TAD: thoracic aortic dissection; TEM: transmission electron microscopy; VSMC: vascular smooth muscle cell; WT: wild-type.

2.
FASEB J ; 38(5): e23513, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38421300

RESUMO

Targeting cardiac remodeling is regarded as a key therapeutic strategy for heart failure. Kielin/chordin-like protein (KCP) is a secretory protein with 18 cysteine-rich domains and associated with kidney and liver fibrosis. However, the relationship between KCP and cardiac remodeling remains unclear. Here, we aimed to investigate the role of KCP in cardiac remodeling induced by pressure overload and explore its potential mechanisms. Left ventricular (LV) KCP expression was measured with real-time quantitative PCR, western blotting, and immunofluorescence staining in pressure overload-induced cardiac remodeling in mice. Cardiac function and remodeling were evaluated in wide-type (WT) mice and KCP knockout (KO) mice by echocardiography, which were further confirmed by histological analysis with hematoxylin and eosin and Masson staining. RNA sequence was performed with LV tissue from WT and KO mice to identify differentially expressed genes and related signaling pathways. Primary cardiac fibroblasts (CFs) were used to validate the regulatory role and potential mechanisms of KCP during fibrosis. KCP was down-regulated in the progression of cardiac remodeling induced by pressure overload, and was mainly expressed in fibroblasts. KCP deficiency significantly aggravated pressure overload-induced cardiac dysfunction and remodeling. RNA sequence revealed that the role of KCP deficiency in cardiac remodeling was associated with cell division, cell cycle, and P53 signaling pathway, while cyclin B1 (CCNB1) was the most significantly up-regulated gene. Further investigation in vivo and in vitro suggested that KCP deficiency promoted the proliferation of CFs via P53/P21/CCNB1 pathway. Taken together, these results suggested that KCP deficiency aggravates cardiac dysfunction and remodeling induced by pressure overload via P53/P21/CCNB1 signaling in mice.


Assuntos
Glicoproteínas , Insuficiência Cardíaca , Peptídeos e Proteínas de Sinalização Intercelular , Deficiência de Proteína , Animais , Camundongos , Proteína Supressora de Tumor p53/genética , Ciclina B1 , Remodelação Ventricular , Transdução de Sinais
3.
Hypertension ; 80(12): 2650-2664, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37800344

RESUMO

BACKGROUND: Inflammation plays a critical role in the development of hypertension and vascular remodeling. Resolvin E1 (RvE1), as one of the specialized proresolving lipid mediators, promotes inflammation resolution by binding with a G protein-coupled receptor, ChemR23 (chemerin receptor 23). However, whether RvE1/ChemR23 regulates hypertension and vascular remodeling is unknown. METHODS: Hypertension in mice was induced by Ang II (angiotensin II) infusion (750 ng/kg per minute), and RvE1 (2 µg/kg per day) was administered through intraperitoneal injection. Loss of ChemR23 was achieved by mice receiving intravenous injection of adeno-associated virus 9-encoding shRNA against ChemR23. RESULTS: Aortic ChemR23 expression was increased in Ang II-induced hypertensive mice and that ChemR23 was mainly expressed on vascular smooth muscle cells (VSMCs). RvE1 lowered blood pressure, reduced aortic media thickness, attenuated aortic fibrosis, and mitigated VSMC phenotypic transformation and proliferation in hypertensive mice, which were all reversed by the knockdown of ChemR23. Moreover, RvE1 reduced the aortic infiltration of macrophages and T cells, which was also reversed by ChemR23 knockdown. RvE1 inhibited Ccl5 expression in VSMCs via the AMPKα (AMP-activated protein kinase α)/Nrf2 (nuclear factor E2-related factor 2)/canonical NF-κB (nuclear factor κB) pathway, thereby reducing the infiltration of macrophages and T cells. The AMPKα/Nrf2 pathway also mediated the effects of RvE1 on VSMC phenotypic transformation and proliferation. In patients with hypertension, the serum levels of RvE1 and other eicosapentaenoic acid-derived metabolites were significantly decreased. CONCLUSIONS: RvE1/ChemR23 ameliorated hypertension and vascular remodeling by activating AMPKα/Nrf2 signaling, which mediated immune cell infiltration by inhibiting the canonical NF-κB/Ccl5 pathway, and regulated VSMC proliferation and phenotypic transformation. RvE1/ChemR23 may be a potential therapeutic target for hypertension.


Assuntos
Hipertensão , Hormônios Peptídicos , Animais , Humanos , Camundongos , Angiotensina II , Quimiocinas , Ácido Eicosapentaenoico/farmacologia , Hipertensão/induzido quimicamente , Inflamação , Peptídeos e Proteínas de Sinalização Intercelular , Fator 2 Relacionado a NF-E2 , NF-kappa B , Remodelação Vascular
4.
Cell Mol Life Sci ; 80(11): 324, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37824022

RESUMO

Immune response plays a crucial role in post-myocardial infarction (MI) myocardial remodeling. Neogenin (Neo1), a multifunctional transmembrane receptor, plays a critical role in the immune response; however, whether Neo1 participates in pathological myocardial remodeling after MI is unclear. Our study found that Neo1 expression changed significantly after MI in vivo and after LPS + IFN-γ stimulation in bone marrow-derived macrophages (BMDMs) in vitro. Neo1 functional deficiency (using a neutralizing antibody) and macrophage-specific Neo1 deficiency (induced by Neo1flox/flox;Cx3cr1cre mice) increased infarction size, enhanced cardiac fibrosis and cardiomyocyte apoptosis, and exacerbated left ventricular dysfunction post-MI in mice. Mechanistically, Neo1 deficiency promoted macrophage infiltration into the ischemic myocardium and transformation to a proinflammatory phenotype, subsequently exacerbating the inflammatory response and impairing inflammation resolution post-MI. Neo1 deficiency regulated macrophage phenotype and function, possibly through the JAK1-STAT1 pathway, as confirmed in BMDMs in vitro. Blocking the JAK1-STAT1 pathway with fludarabine phosphate abolished the impact of Neo1 on macrophage phenotype and function, inflammatory response, inflammation resolution, cardiomyocyte apoptosis, cardiac fibrosis, infarction size and cardiac function. In conclusion, Neo1 deficiency aggravates inflammation and left ventricular remodeling post-MI by modulating macrophage phenotypes and functions via the JAK1-STAT1 signaling pathway. These findings highlight the anti-inflammatory potential of Neo1, offering new perspectives for therapeutic targets in MI treatment. Neo1 deficiency aggravated inflammation and left ventricular remodeling after MI by modulating macrophage phenotypes and functions via the JAK1-STAT1 signaling pathway.


Assuntos
Infarto do Miocárdio , Remodelação Ventricular , Animais , Camundongos , Modelos Animais de Doenças , Fibrose , Inflamação/patologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Janus Quinase 1/metabolismo , Fator de Transcrição STAT1/metabolismo
5.
Ann Med ; 54(1): 553-564, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35139697

RESUMO

RATIONALE: Aortic aneurysm (AA) is a serious condition that largely increases the risk of aortic dissection and sudden death. Exploring the global burden of disease and changes in risk factors for AA is essential for public health policy development. OBJECTIVE: To project the death burden from AA and its attributable risk factors in the following decade based on the epidemiological data over the past 30 years. METHODS AND RESULTS: We analysed the death burden of AA and trends of four risk factors from 1990-2019 using the updated 2019 Global Burden of Disease study database by Joinpoint regression analysis. Furthermore, we project the AA-related death burden for the next decade using the Bayesian age-period-cohort model. This study discovered that the global burden of death attributable to AA began to increase after decreasing for two decades. This upward trend will continue in the subsequent decade (average annual percent change: 0.318%, 95% CI: 0.288 to 0.348). Meanwhile, the disease burdens in all economic regions except high-middle socio-demographic index (SDI) regions will continuously increase in the next decade, with the fastest acceleration in the low-middle SDI region (average annual percent change: 1.183%, 95% CI: 1.166 to 1.200). Notably, high systolic blood pressure will surpass the contribution of smoking to become the most important risk factor for mortality due to AA. CONCLUSION: This study discovered a rebounding trend in the aortic aneurysm-related death burden globally. High systolic blood pressure will be the top risk factor attributed to death from AA. Therefore, it should be considered as the first-degree risk factor in the guidance of AA management and criteria for population-based screening programs.Key messagesThe death burden of aortic aneurysms is beginning to rebound globally, and the trend will continue for the next decade.High systolic blood pressure will replace smoking as the most important risk factor associated with aortic aneurysm death.


Assuntos
Aneurisma Aórtico , Carga Global da Doença , Aneurisma Aórtico/epidemiologia , Teorema de Bayes , Pressão Sanguínea , Saúde Global , Humanos , Anos de Vida Ajustados por Qualidade de Vida , Fatores de Risco
6.
Clin Sci (Lond) ; 132(11): 1199-1213, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29695588

RESUMO

Mindin, which is a highly conserved extracellular matrix protein, has been documented to play pivotal roles in regulating angiogenesis, inflammatory processes, and immune responses. The aim of the present study was to assess whether mindin contributes to the development of atherosclerosis. A significant up-regulation of Mindin expression was observed in the serum, arteries and atheromatous plaques of ApoE-/- mice after high-fat diet treatment. Mindin-/-ApoE-/- mice and macrophage-specific mindin overexpression in ApoE-/- mice (Lyz2-mindin-TG) were generated to evaluate the effect of mindin on the development of atherosclerosis. The Mindin-/-ApoE-/- mice exhibited significantly ameliorated atherosclerotic burdens in the entire aorta and aortic root and increased atherosclerotic plaque stability. Moreover, bone marrow transplantation further demonstrated that mindin deficiency in macrophages was largely responsible for the alleviated atherogenesis. The Lyz2-mindin-TG mice exhibited the opposite phenotype. Mindin deficiency enhanced foam cell formation by increasing the expression of cholesterol effectors, including ABCA1 and ABCG1. The mechanistic study indicated that mindin ablation promoted LXR-ß expression via a direct interaction. Importantly, LXR-ß inhibition largely reversed the ameliorating effect of mindin deficiency on foam cell formation and ABCA1 and ABCG1 expression. The present study demonstrated that mindin deficiency serves as a novel mediator that protects against foam cell formation and atherosclerosis by directly interacting with LXR-ß.


Assuntos
Aterosclerose/prevenção & controle , Proteínas da Matriz Extracelular/deficiência , Receptores X do Fígado/metabolismo , Macrófagos/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Transplante de Medula Óssea , Dieta Hiperlipídica , Proteínas da Matriz Extracelular/biossíntese , Proteínas da Matriz Extracelular/fisiologia , Células Espumosas/patologia , Hiperlipidemias/metabolismo , Mediadores da Inflamação/metabolismo , Receptores X do Fígado/antagonistas & inibidores , Macrófagos/patologia , Masculino , Camundongos Knockout para ApoE , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Regulação para Cima/fisiologia
7.
J Lipid Res ; 59(4): 658-669, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29463607

RESUMO

Atherosclerosis is considered to be a chronic inflammatory disease that can lead to severe clinically important cardiovascular events. miR-150 is a small noncoding RNA that significantly enhances inflammatory responses by upregulating endothelial cell proliferation and migration, as well as intravascular environmental homeostasis. However, the exact role of miR-150 in atherosclerosis remains unknown. Here, we investigated the effect of miR-150 deficiency on atherosclerosis development. Using double-knockout (miR-150-/- and ApoE-/-) mice, we measured atherosclerotic lesion size and stability. Meanwhile, we conducted in vivo bone marrow transplantation to identify cellular-level components of the inflammatory response. Compared with mice deficient only in ApoE, the double-knockout mice had significantly smaller atherosclerotic lesions and displayed an attenuated inflammatory response. Moreover, miR-150 ablation promoted plaque stabilization via increases in smooth muscle cell and collagen content and decreased macrophage infiltration and lipid accumulation. The in vitro experiments indicated that an inflammatory response with miR-150 deficiency in atherosclerosis results directly from upregulated expression of the cytoskeletal protein, PDZ and LIM domain 1 (PDLIM1), in macrophages. More importantly, the decreases in phosphorylated p65 expression and inflammatory cytokine secretion induced by miR-150 ablation were reversed by PDLIM1 knockdown. These findings suggest that miR-150 is a promising target for the management of atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/patologia , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , MicroRNAs/metabolismo , Animais , Proteínas com Domínio LIM/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Fatores de Transcrição/metabolismo , Regulação para Cima
8.
J Neurosci ; 37(50): 12123-12140, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29114077

RESUMO

Stroke is one of the leading causes of morbidity and mortality worldwide. Inflammation, oxidative stress, apoptosis, and excitotoxicity contribute to neuronal death during ischemic stroke; however, the mechanisms underlying these complicated pathophysiological processes remain to be fully elucidated. Here, we found that the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6) was markedly increased after cerebral ischemia/reperfusion (I/R) in mice. TRAF6 ablation in male mice decreased the infarct volume and neurological deficit scores and decreased proinflammatory signaling, oxidative stress, and neuronal death after cerebral I/R, whereas transgenic overexpression of TRAF6 in male mice exhibited the opposite effects. Mechanistically, we demonstrated that TRAF6 induced Rac1 activation and consequently promoted I/R injury by directly binding and ubiquitinating Rac1. Either functionally mutating the TRAF6 ubiquitination site on Rac1 or inactivating Rac1 with a specific inhibitor reversed the deleterious effects of TRAF6 overexpression during I/R injury. In conclusion, our study demonstrated that TRAF6 is a key promoter of ischemic signaling cascades and neuronal death after cerebral I/R injury. Therefore, the TRAF6/Rac1 pathway might be a promising target to attenuate cerebral I/R injury.SIGNIFICANCE STATEMENT Stroke is one of the most severe and devastating neurological diseases globally. The complicated pathophysiological processes restrict the translation of potential therapeutic targets into medicine. Further elucidating the molecular mechanisms underlying cerebral ischemia/reperfusion injury may open a new window for pharmacological interventions to promote recovery from stroke. Our study revealed that ischemia-induced tumor necrosis factor receptor-associated factor 6 (TRAF6) upregulation binds and ubiquitinates Rac1 directly, which promotes neuron death through neuroinflammation and neuro-oxidative signals. Therefore, precisely targeting the TRAF6-Rac1 axis may provide a novel therapeutic strategy for stroke recovery.


Assuntos
Infarto da Artéria Cerebral Média/enzimologia , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Traumatismo por Reperfusão/enzimologia , Fator 6 Associado a Receptor de TNF/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Células Cultivadas , Células HEK293 , Humanos , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/genética , Estresse Oxidativo , RNA Interferente Pequeno/farmacologia , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Fator 6 Associado a Receptor de TNF/genética , Transfecção , Ubiquitinação , Regulação para Cima
9.
J Lipid Res ; 58(5): 895-906, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28258089

RESUMO

Oncostatin M (OSM) is a secreted cytokine mainly involved in chronic inflammatory and cardiovascular diseases through binding to OSM receptor ß (OSMR-ß). Recent studies demonstrated that the presence of OSM contributed to the destabilization of atherosclerotic plaque. To investigate whether OSMR-ß deficiency affects atherosclerosis, male OSMR-ß-/-ApoE-/- mice were generated and utilized. Here we observed that OSMR-ß expression was remarkably upregulated in both human and mouse atherosclerotic lesions, which were mainly located in macrophages. We found that OSMR-ß deficiency significantly ameliorated atherosclerotic burden in aorta and aortic root relative to ApoE-deficient littermates and enhanced the stability of atherosclerotic plaques by increasing collagen and smooth muscle cell content, while decreasing macrophage infiltration and lipid accumulation. Moreover, bone marrow transplantation of OSMR-ß-/- hematopoietic cells to atherosclerosis-prone mice displayed a consistent phenotype. Additionally, we observed a relatively reduced level of JAK2 and signal transducer and activator of transcription (STAT)3 in vivo and under Ox-LDL stimulation in vitro. Our findings suggest that OSMR-ß deficiency in macrophages improved high-fat diet-induced atherogenesis and plaque vulnerability. Mech-anistically, the protective effect of OSMR-ß deficiency on atherosclerosis may be partially attributed to the inhibition of the JAK2/STAT3 activation in macrophages, whereas OSM stimulation can activate the signaling pathway.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/patologia , Janus Quinase 2/metabolismo , Macrófagos/patologia , Subunidade beta de Receptor de Oncostatina M/deficiência , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Animais , Aterosclerose/genética , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Necrose/metabolismo , Subunidade beta de Receptor de Oncostatina M/genética , Subunidade beta de Receptor de Oncostatina M/metabolismo , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia
10.
J Neurochem ; 136(4): 871-883, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26617114

RESUMO

Interferon regulatory factor 3 (IRF3) is a transcription factor that plays a central role in the innate immune response, apoptosis, and oncogenesis. Previous studies have shown that endogenous IRF3 does not affect stroke in mice; however, paradoxically, elevated IRF3 expression was observed in the rat brains following cerebral ischemia/reperfusion (I/R) injury, indicating that IRF3 may have different functions during stroke in rats than in mice. A clear and comprehensive study of the effect of IRF3 on stroke in rats has been hampered by the lack of an IRF3-knockout rat strain. In this study, a novel IRF3 knockout rat strain and a transgenic rat strain with neuronal-specific IRF3 over-expression (IRF3-TG) were created. Subsequently, the generated IRF3-knockout rats, the neuronal-specific IRF3 over-expressing rats and their corresponding controls were subjected to transient middle cerebral artery occlusion and followed by reperfusion, to investigate the exact role of IRF3 in cerebral I/R in rats. In contrast to the results in mice, IRF3 deficiency in rats provided significant protection against cerebral I/R injury and inhibited neuronal apoptosis, inflammation, and oxidative stress after cerebral I/R injury; the opposite patterns were observed in neuronal-specific IRF3 over-expressing rats. Taken together, these data demonstrate that IRF3 plays a negative regulatory role in cerebral I/R in rats, and IRF3 may be an attractive therapeutic target for preventing stroke. In the present study, we discovered that the transcription factor IRF3, which plays a central role in the innate immune response, apoptosis, and oncogenesis, could exacerbate cerebral ischemia/reperfusion (I/R) injury via activating caspase-dependent neuronal apoptosis, inducing inflammation and oxidative stress. These findings suggest that IRF3 may be an attractive therapeutic target for the prevention of stroke.

11.
Neurosci Lett ; 582: 104-8, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25220701

RESUMO

This study aimed to explore the possible mechanisms underlying the antidepressant-like effect of YL-0919, a novel antidepressant candidate with dual activity as a 5-HT1A receptor agonist and a selective serotonin reuptake inhibitor. The animal models commonly used to evaluate potential antidepressants, i.e., tail suspension (TST) in mice and forced swimming test (FST) in mice were used to evaluate the antidepressant effect of YL-0919. The activity of adenylate cyclase (AC) on the synaptic membrane was determined by the homogeneous time-resolved fluorescence resonance energy transfer (TR-FRET) immunoassay. The results indicated that YL-0919 (1.25-2.5mg/kg, i.g.) significantly decreased the immobility time in both the tail suspension test and the forced swim test in a dose-dependent manner, demonstrating the antidepressant-like effect of YL-0919. Furthermore, this effect was completely antagonized by the co-administration of WAY-100635 (0.3mg/kg, s.c.), a 5-HT1A selective antagonist. YL-0919 (10(-9)-10(-5)mol/L) was also shown to activate AC in vitro in a dose-dependent manner in synaptic membranes extracted from the rat prefrontal cortex, and this effect (10(-7)-10(-5)mol/L) was antagonized by WAY-100635 (10(-7)mol/L). Finally, the antidepressant-like effect of YL-0919 (2.5mg/kg, i.g.) was also blocked by the co-administration of H-89 (3 µg/site, i.c.v.), a protein kinase A (PKA) selective inhibitor. These results indicate that the activation of 5-HT1A receptors and the subsequent activation of the AC-cAMP-PKA signaling pathway in the frontal cortex play a critical role in the antidepressant-like effect of YL-0919.


Assuntos
Adenilil Ciclases/metabolismo , Antidepressivos/farmacologia , Piperidinas/farmacologia , Piridonas/farmacologia , Receptor 5-HT1A de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Animais , AMP Cíclico/metabolismo , Ativação Enzimática , Masculino , Camundongos Endogâmicos ICR , Piperazinas/farmacologia , Piridinas/farmacologia , Ratos Wistar , Antagonistas da Serotonina/farmacologia , Transdução de Sinais , Membranas Sinápticas/enzimologia
12.
Br J Pharmacol ; 168(4): 1001-14, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23003922

RESUMO

BACKGROUND AND PURPOSE: Phosphodiesterase 4 (PDE4) inhibitors produce potent antidepressant-like and cognition-enhancing effects. However, their clinical utility is limited by the major side effect of emesis, which appears to be PDE4 isoform-specific. Although PDE4D subtype plays the pivotal role in these therapeutic profiles, it is also the primary subtype responsible for emesis. Therefore, the aim of present research was to investigate whether long-form PDE4D variants mediate antidepressant-like and cognition-enhancing effects, but are irrespective with emesis. EXPERIMENTAL APPROACH: In mice microinfused with lentiviral vectors that contained shRNA-mir hairpin structure targeting long-form PDE4Ds into bilateral prefrontal cortices, the tail-suspension and forced-swim tests were used to measure antidepressant-like effects; novel object recognition and Morris water-maze tasks were used to determine cognition-enhancing effects. The emetic potential was assessed by alpha2 adrenergic receptor-mediated anaesthesia, a surrogate measure of emesis. Intracellular cAMP signalling was analysed by time-resolved FRET immunoassay and Western-blot. Dendritic complexity was assessed by Golgi staining. KEY RESULTS: Microinfusions of lentiviral PDE4D-shRNA down-regulated PDE4D4 and PDE4D5, and imitated the antidepressant-like and cognition-enhancing effects of the prototypical PDE4 inhibitor rolipram. The behavioural effects were related to dendritic complexity and mediated by the increased cAMP signalling. In addition, these effects were not enhanced in the presence of rolipram. Finally, while rolipram shortened the duration of combined anaesthesia, RNA interference-mediated PDE4D knock-down in the prefrontal cortex did not. CONCLUSION AND IMPLICATIONS: These data suggest that long-form PDE4Ds, at least PDE4D4 and PDE4D5, may be the promising targets for the development of PDE4 variant-selective inhibitors as the new pharmacotherapies for depressive disorders and neurodegenerative diseases involving memory deficits.


Assuntos
Cognição , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Depressão/enzimologia , Córtex Pré-Frontal/enzimologia , Interferência de RNA , Animais , Antidepressivos/efeitos adversos , Antidepressivos/uso terapêutico , Comportamento Animal/fisiologia , Western Blotting , Cognição/fisiologia , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Depressão/fisiopatologia , Depressão/prevenção & controle , Técnicas de Silenciamento de Genes , Vetores Genéticos , Células HEK293 , Humanos , Lentivirus/genética , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Inibidores da Fosfodiesterase 4/efeitos adversos , Inibidores da Fosfodiesterase 4/uso terapêutico , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Vômito/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA