Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 11: 1360878, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482171

RESUMO

Sodium butyrate (NaB) has garnered attention in recent years for its ability to impede the malignant progression of tumors. In order to explore the potential inhibitory effects of NaB on the replication of Marek's disease virus (MDV) and subsequent lymphoma formation, newly hatched chickens were infected with the vvMDV Md5 strain and administered NaB prior to (prevention group) or following (treatment group) Md5 inoculation. The results revealed that NaB played a pivotal role in diminishing both the incidence and fatality rates in chickens afflicted with Md5 infection. Notably, NaB exhibited a remarkable capacity to inhibit the expression of MDV immediate early genes, i.e., ICP4 and ICP27, thus attenuating tumorigenesis in the chicken spleen. To further elucidate the mechanism of NaB on lymphoma cells, MDV bearing lymphoma cells, i.e., MSB-1 were exposed to NaB for 24 h prior to various experimental tests. The results revealed that NaB effectively hindered the proliferation, migration, and colony formation of MSB-1 cells. Furthermore, NaB demonstrated the ability to modulate the key molecules in mitochondrial apoptosis pathway. Taken together, these findings reveal that NaB can impede the lymphoma caused by MDV via regulating the mitochondrial apoptosis pathway, both in vitro and in vivo. These results suggest that the utilization of NaB warrants serious consideration as a promising approach for the prevention of MDV.

2.
ACS Biomater Sci Eng ; 8(8): 3377-3386, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35861149

RESUMO

Recently, molybdenum sulfide (MoS2) has shown great application potential in tumor treatment because of its good photothermal properties. Unfortunately, most of the current molybdenum disulfide-based nanotherapeutic agents suffer from complex preparation processes, low photothermal conversion efficiencies, and poor structural/compositional regulation. To address these issues, in this paper, a facile "confined solvothermal" method is proposed to construct an MoS2-loaded porous silica nanosystem (designated as MoS2@P-hSiO2). The maximum photothermal efficiency of 79.5% of molybdenum-based materials reported in the literature at present was obtained due to the ultrasmall MoS2 nanoclusters and the rich porous channels. Furthermore, both in vitro and in vivo experiments showed that the cascade hybrid system (MoS2/GOD@P-hSiO2) after efficient loading of glucose oxidase (GOD) displayed a significant tumor-suppressive effect and good biosafety through the combined effects of photothermal and enzyme-mediated cascade catalytic therapy. Consequently, this hybrid porous network system combining the in situ solvothermal strategy of inorganic functional components and the efficient encapsulation of organic enzyme macromolecules can provide a new pathway to construct synergistic agents for the efficient and safe treatment of tumors.


Assuntos
Molibdênio , Neoplasias , Dissulfetos , Humanos , Molibdênio/uso terapêutico , Neoplasias/tratamento farmacológico , Fototerapia , Porosidade , Dióxido de Silício
3.
Nat Commun ; 13(1): 91, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013181

RESUMO

Pursuing and developing effective methodologies to construct highly active catalytic sites to maximize the atomic and energy efficiency by material engineering are attractive. Relative to the tremendous researches of carbon-based single atom systems, the construction of bio-applicable single atom materials is still in its infancy. Herein, we propose a facile and general interfacial-confined coordination strategy to construct high-quality single-atom nanotherapeutic agent with Fe single atoms being anchored on defective carbon dots confined in a biocompatible mesoporous silica nanoreactor. Furthermore, the efficient energy conversion capability of silica-based Fe single atoms system has been demonstrated on the basis of the exogenous physical photo irradiation and endogenous biochemical reactive oxygen species stimulus in the confined mesoporous network. More importantly, the highest photothermal conversion efficiency with the mechanism of increased electron density and narrow bandgap of this single atom structure in defective carbon was proposed by the theoretical DFT calculations. The present methodology provides a scientific paradigm to design and develop versatile single atom nanotherapeutics with adjustable metal components and tune the corresponding reactions for safe and efficient tumor therapeutic strategy.


Assuntos
Carcinoma Hepatocelular/terapia , Óxido Ferroso-Férrico/química , Neoplasias Hepáticas/terapia , Nanopartículas Metálicas/administração & dosagem , Terapia Fototérmica/métodos , Nanomedicina Teranóstica/métodos , Animais , Carbono/química , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Feminino , Glutationa/química , Humanos , Luz , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Teoria Quântica , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/química , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Biomater Sci ; 10(2): 524-535, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-34904973

RESUMO

An ideal drug delivery system must have a high level of stability to ensure effective circulation and passive aggregation, good retention performance, and dynamic delivery and treatment monitoring. Thus, the development of a smart drug delivery carrier with both precise drug release and real-time detection remains a challenge. Herein, we propose a confined crosslink protocol to prepare an intelligent hybrid delivery system for auto-fluorescent monitoring, protonation-induced retention and precise drug release. The construction of this system involves the hydrolysis and condensation of (3-aminopropyl)triethoxysilane (APTES) silanes inside the Pluronic polymer micelles and thereafter a confined Schiff base crosslinking between glutaraldehyde (GA) and residual silane amino groups. The size of the intelligent docetaxel (DTX)-loaded nanosystem changes from ∼25 nm in blood circulation or normal tissues (pH ∼ 7.4) to ∼250 nm in slightly acidic environments (pH ∼ 6.5-7.0) owing to intra-molecular hydrogen bond-induced aggregation and imine cleavage-induced disintegration in the endosome (pH ∼ 5.0-6.2) along with auto-fluorescent monitoring contributing to the high-efficiency chemotherapy. This work provides a new method to construct smart, acid-responsive and fluorescent-guided drug-delivery carrier systems for efficient and safe tumor chemotherapy.


Assuntos
Antineoplásicos , Micelas , Antineoplásicos/uso terapêutico , Docetaxel , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Polímeros
5.
Nat Commun ; 12(1): 5243, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475406

RESUMO

Peroxisome, a special cytoplasmic organelle, possesses one or more kinds of oxidases for hydrogen peroxide (H2O2) production and catalase for H2O2 degradation, which serves as an intracellular H2O2 regulator to degrade toxic peroxides to water. Inspired by this biochemical pathway, we demonstrate the reactive oxygen species (ROS) induced tumor therapy by integrating lactate oxidase (LOx) and catalase (CAT) into Fe3O4 nanoparticle/indocyanine green (ICG) co-loaded hybrid nanogels (designated as FIGs-LC). Based on the O2 redistribution and H2O2 activation by cascading LOx and CAT catalytic metabolic regulation, hydroxyl radical (·OH) and singlet oxygen (1O2) production can be modulated for glutathione (GSH)-activated chemodynamic therapy (CDT) and NIR-triggered photodynamic therapy (PDT), by manipulating the ratio of LOx and CAT to catalyze endogenous lactate to produce H2O2 and further cascade decomposing H2O2 into O2. The regulation reactions of FIGs-LC significantly elevate the intracellular ROS level and cause fatal damage to cancer cells inducing the effective inhibition of tumor growth. Such enzyme complex loaded hybrid nanogel present potential for biomedical ROS regulation, especially for the tumors with different redox state, size, and subcutaneous depth.


Assuntos
Antineoplásicos/farmacologia , Nanogéis/química , Peroxissomos/enzimologia , Fotoquimioterapia/métodos , Animais , Antineoplásicos/química , Catalase/química , Catalase/metabolismo , Catálise , Linhagem Celular Tumoral , Óxido Ferroso-Férrico/química , Glutationa/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Verde de Indocianina/química , Camundongos , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral/efeitos dos fármacos
6.
AMB Express ; 10(1): 205, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33175252

RESUMO

This paper studied the inhibitory effects of dithiocyano-methane (DM) on the glucose decomposition pathway in the respiratory metabolism of Escherichia coli. We investigated the effects of DM on the activities of key enzymes (ATPase and glucose-6-phosphate dehydrogenase, G6PDH), the levels of key product (nicotinamide adenosine denucleotide hydro-phosphoric acid, NADPH), and gene expression in the hexose monophosphate pathway (HMP). The results showed that the minimum inhibitory concentration (MIC) and the minimum bactericide concentration (MBC) of DM against the tested strains were 5.86 mg/L and 11.72 mg/L, respectively. Bacteria exposed to DM at MIC demonstrated an increase in bacterial ATPase and G6PDH activities, NADPH levels, and gene expression in the HMP pathway compared to bacteria in the control group, which could be interpreted as a behavioral response to stress introduced by DM. However, DM at a lethal concentration of 10 × MIC affected glucose decomposition by inhibiting mainly the HMP pathway in E. coli.

7.
J Cell Mol Med ; 24(6): 3549-3559, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32052546

RESUMO

Lung cancer is the world's leading cause of cancer-related morbidity and mortality despite advances in surgery, chemotherapy and immunotherapy; thus, there is an urgent need to find new molecules to develop novel treatment strategies. Although ncRNAs were found to account for 98% transcripts, the number of lncRNAs with distinct function in lung cancer is extremely limited. We previously demonstrated that Plasmodium infection inhibits tumour growth and metastasis, but the exact mechanisms involved have not been fully understood. In this study, we carried out RNA sequencing (RNA-Seq) of tumour tissues isolated from LLC tumour-bearing mice treated with either Plasmodium yoelli (Py)-infected red blood cells or uninfected red blood cells. We found that F630028O10Rik (abbreviated as F63) is a novel lncRNA that was significantly up-regulated in tumours isolated from mice treated with Py-infected red blood cells compared to the control. By using gene silencing technique, F63 was found to inhibit both tumour Vascular Endothelial Growth Factor A (VEGFA) secretion and endothelial cells clone formation, migration, invasion and tube formation. Injection of cholesterol-modified siRNA-F63 into mice tumour tissues produced a significant increase in tumour volume, blood vessel formation and angiogenesis 17 days after injection. We further showed that inhibiting miR-223-3p results in the down-regulation of VEGFA and VEGFR2 which are vital molecules for angiogenesis. These results reveal that F63 inhibit tumour growth and progression by modulating tumour angiogenesis suggesting F63 can be a novel lncRNA with great potential as a candidate molecule for gene therapy in lung cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/genética , MicroRNAs/genética , Neovascularização Patológica/genética , RNA Longo não Codificante/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Modelos Biológicos , Biossíntese de Proteínas , RNA Longo não Codificante/genética , Transcrição Gênica , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
8.
ACS Appl Bio Mater ; 3(7): 4655-4664, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35025464

RESUMO

Upconversion nanoparticles (UCNPs) can convert near-infrared light (NIR, 980 or 808 nm) to ultraviolet (UV) or visible light, which can be widely used to improve tissue penetration depth in photodynamic therapy (PDT). Herein, we develop a kind of UCNP-based organosilica-micellar hybrid nanoplatform for redox-responsive chemotherapy and NIR-mediated PDT. The nanoplatform was constructed by the self-assembly of block copolymers polystyrene-b-poly (acrylic acid) and oil-soluble UCNPs in the oil/water system and the subsequent organosilica coating with 3-mercaptopropyltrimethoxysilane molecules. To endow the nanosystem with more stability in biological media, polyethylene glycol molecules were further modified via the Michael addition reaction. As a promising nanocarrier, chlorin e6 (Ce6) and doxorubicin (DOX) molecules were loaded into the hydrophobic core and the disulfide-doped organosilica shell, respectively. With endocytosis by SMMC-7721 tumor cells, the Ce6 and DOX coloaded nanosystem was activated by UCNPs through luminescence resonance energy transfer under the irradiation of 808 nm laser, thus generating cytotoxic 1O2 for NIR-mediated PDT. Meanwhile, DOX was selectively released because of the redox-responsive biodegradation of the disulfide-doped organosilica shell in the glutathione over-expressed SMMC-7721 tumor cells. Based on these, the chemotherapy/PDT combination toxic feature of the multifunctional nanosystem was further demonstrated in the DOX-resistant MCF-7 tumor cells. On the other hand, the Ce6 and DOX coloaded nanosystem exhibited negligible toxicity to the normal 3T3 cell because of the protective effects of organosilica coating. We envision that the resultant hybrid nanoplatform provides us a promising nanocarrier for the combination therapy of redox-responsive safe chemotherapy and efficient NIR-mediated PDT.

9.
Cell Commun Signal ; 17(1): 32, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979375

RESUMO

BACKGROUND: A major challenge in the development of effective cancer immunotherapy is the ability of tumors and their microenvironment to suppress immune cells through immunosuppressive cells such as myeloid -derived suppressor cells and regulatory T cells. We previously demonstrated that Plasmodium infection promotes innate and adaptive immunity against cancer in a murine Lewis lung cancer model but its effects on immunosuppressive cells in the tumor microenvironment are unknown. METHODS: Whole Tumors and tumor-derived sorted cells from tumor-bearing mice treated with or without plasmodium infected red blood cells were harvested 17 days post tumor implantation and analyzed using QPCR, western blotting, flow cytometry, and functional assays. Differences between groups were analyzed for statistical significance using Student's t-test. RESULTS: Here we found that Plasmodium infection significantly reduced the proportions of MDSCs and Tregs in the lung tumor tissues of the treated mice by downregulating their recruiting molecules and blocking cellular activation pathways. Importantly, CD8+ T cells isolated from the tumors of Plasmodium-treated mice exhibited significantly higher levels of granzyme B and perforin and remarkably lower levels of PD-1. CONCLUSION: We reveal for the first time, the effects of Plasmodium infection on the expansion and activation of MDSCs and Tregs with a consequent elevation of CD8+T cell-mediated cytotoxicity within the tumor microenvironment and hold great promise for the development of effective immunotherapeutic strategies.


Assuntos
Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/terapia , Terapia de Imunossupressão/métodos , Malária/imunologia , Células Supressoras Mieloides/imunologia , Plasmodium yoelii/imunologia , Linfócitos T Reguladores/imunologia , Microambiente Tumoral/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Feminino , Granzimas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Citotóxicas Formadoras de Poros/imunologia , Receptor de Morte Celular Programada 1/imunologia
10.
Int J Nanomedicine ; 14: 1519-1532, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30880962

RESUMO

INTRODUCTION: In this work, we have developed a novel "confined-growth" strategy to synthesize PEGylated multiple gold nanorices-encapsulated dual-mesoporous silica nanospheres (designated as PEGylated MGNRs@DMSSs) containing both small mesopores (2.5 nm) in the shell and large mesopores (21.7 nm) in the core based on a well-established, seed-mediated growth method. The photothermal effect and CT imaging ability were also studied. METHODS: The nanoparticles were characterized by Fourier transform infrared (FT-IR) spectra, N2 absorption isotherms, Field-emission scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM), Inductively coupled plasma atomic emission spectroscopy (ICP-AES) and Confocal microscopy. RESULTS: The longitudinally-localized surface (LSPR) absorption properties of MGNRs@DMSSs can be easily tuned by altering the amount of HAuCl4 in the gold growth solution. Additionally, the resultant PEGylated MGNRs@DMSSs have monodispersed, spherical morphology and good colloidal stability in an aqueous solution. More importantly, when exposed to NIR irradiation, the PEGylated MGNRs@DMSSs exhibit both higher temperature increments and better photothermal effects than that of single PEGylated gold nanorods at nearly an equivalent LSPR absorption. In addition, as CT contrast agents, the PEGylated MGNRs@DMSSs display a better CT imaging performance, in comparison with single PEGylated gold nanorods at the same Au concentration. CONCLUSION: Taken together, results indicate the potential for MGNRs@DMSSs used in CT imaging-guided photothermal therapy. Such a simple "confined-growth" strategy within a porous matrix offers a promising platform to design and prepare novel metal(s) oxide@silica nanocomposites for use in further cancer bio-imaging and therapy.


Assuntos
Carcinoma Hepatocelular/terapia , Ouro/química , Neoplasias Hepáticas/terapia , Nanocompostos/administração & dosagem , Fototerapia , Dióxido de Silício/química , Tomografia Computadorizada por Raios X/métodos , Animais , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/patologia , Proliferação de Células , Feminino , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , Nanocompostos/química , Células Tumorais Cultivadas
11.
ACS Appl Bio Mater ; 2(12): 5707-5716, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-35021564

RESUMO

Yolk-shell-structured nanoparticles (YSNs) provide useful carriers for applications in biomedicine and catalysis due to the excellent loading capability and versatile functionality of the flexible core and porous shell. Unfortunately, the reported YSNs always require complex multistep synthesis processes and a harsh hard-template etching strategy. Herein, a facile "selective extraction" strategy is developed to synthesize yolk-shell-structured polymer@void@mSiO2 nanoparticles (designated as YSPNs) comprising deformable and soft polystyrene-b-poly(acrylic acid) (PS-b-PAA) micellar cores and mesoporous silica shells. The YSPNs are formed by a morphological change and volume shrinkage of the PS-b-PAA aggregates from large compound vesicles to large compound micelles during the extraction process. As a multidrug vehicle, both hydrophobic curcumin (Cur, 6.4 wt %) and hydrophilic doxorubicin hydrochloride (Dox, 19.4 wt %) can be coloaded onto YSPNs through a successive impregnation method. Moreover, the resulting Cur/Dox@YSPNs possess intelligent pH-responsive capability, time-sequenced release behavior, and high in vivo antitumor efficiency, demonstrating excellent potential as safe and efficient multidrug nanocarriers for tumor chemotherapy. We envision that such a facile "selective extraction" strategy will enable pathways to construct organic-inorganic hybrid nanoparticles with yolk-shell structures for various applications.

12.
J Ultrasound Med ; 38(1): 191-202, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29781183

RESUMO

OBJECTIVES: Low-intensity pulsed ultrasound (LIPUS) combined with porous scaffolds can be used as a new therapy to treat bone defect repair. The aim of this study was to evaluate the effects of 1 and 3.2 MHz LIPUS on osteogenesis on porous Ti64 alloy scaffolds for both in vitro and in vivo studies. METHODS: Scaffolds were randomly divided into the high-frequency ultrasound group, low-frequency ultrasound group, and control group. Mouse pre-osteoblast cells were cultured with porous Ti-6Al-4V scaffolds in vitro to evaluate cell proliferation and differentiation. In addition, scaffolds were implanted into rabbit mandibular defects in vivo. The effects of LIPUS on bone regeneration were evaluated by observing the micro-computed tomography (micro-CT), toluidine blue staining, and von Kossa staining. RESULTS: The results revealed no significant difference in the cell counting kit-8 values between the ultrasound groups and control groups (P > .05). Compared with the control group, ultrasound promoted alkaline phosphatase activity and osteocalcin levels of the cells on the scaffolds (P < .05), but there was no significant difference between the two frequencies. In addition, histomorphologic analyses revealed that the volume and amount of new bone formation increased and that bone maturity improved in the ultrasound groups compared with the control group, but no significant difference was noted between the two frequencies. CONCLUSIONS: Under the present experimental conditions, LIPUS promoted osteoblast differentiation and promoted bone maturity on porous Ti64 scaffolds. No significant differences were noted between the two frequencies.


Assuntos
Regeneração Óssea/fisiologia , Doenças Mandibulares/terapia , Osteogênese/fisiologia , Titânio , Terapia por Ultrassom/métodos , Ondas Ultrassônicas , Ligas , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Modelos Animais de Doenças , Técnicas In Vitro , Masculino , Mandíbula/diagnóstico por imagem , Doenças Mandibulares/diagnóstico por imagem , Camundongos , Osteoblastos/fisiologia , Coelhos , Microtomografia por Raio-X/métodos
13.
Oncotarget ; 8(15): 24785-24796, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28445973

RESUMO

We have previously demonstrated that malaria parasite infection has an anti-tumor effect in a mouse model. This research aimed to investigate the possibility of using Plasmodium parasite as a novel vaccine vector for hepatocellular carcinoma (HCC) immunotherapy. We constructed a Plasmodium yoelii 17XNL strain (P.y) expressing murine glypican-3 (GPC3) protein (P.y-GPC3), and examined its therapeutic potency in a murine Hepa1-6-induced hepatoma model that highly expressed GPC3 protein. The prerequisites for invoking a CD8+ T cell response were assessed after P.y-based immunization, which included obviously increased concentrations of T helper cell type 1 (Th1)-associated cytokines, such as IL-2, IFN-γ and TNF-α, in serum and preferential expansion of the CD8α+ dendritic cell (DC) subset with higher expression of CD80 and CD86 molecules. Compared with uninfected and wild-type P.y-infected mice, a significant GPC3-specific cytotoxic T lymphocyte (CTL) response was detected in P.y-GPC3 vaccinated mice. Furthermore, P.y-GPC3-based vaccination dramatically inhibited Hepa1-6-induced tumor growth in the implanted HCC and prolonged the survival of tumor-bearing mice. We concluded that a Plasmodium-based vector is highly efficient in inducing tumor antigen-specific T cell-mediated immunity and protection against tumor cells. More broadly, this strategy supported our hypothesis that Plasmodium parasites, as novel therapeutic antigen vectors, may be applicable to tumor immunotherapy for patients with HCC.


Assuntos
Vacinas Anticâncer/administração & dosagem , Carcinoma Hepatocelular/terapia , Glipicanas/administração & dosagem , Neoplasias Hepáticas/terapia , Plasmodium/genética , Animais , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/parasitologia , Carcinoma Hepatocelular/patologia , Feminino , Glipicanas/genética , Glipicanas/imunologia , Xenoenxertos , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/parasitologia , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium/imunologia , Distribuição Aleatória , Análise de Sobrevida , Linfócitos T Citotóxicos/imunologia
14.
Pharmacol Res ; 110: 25-34, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27157248

RESUMO

Despite advances in chemotherapy and immunotherapy, advanced lung cancer remains an incurable disease. Novel trends in anticancer therapeutics focus on harnessing the therapeutically-targeted tumor-related immune suppression. In this respect, myeloid-derived suppressor cells (MDSCs) have captured considerable attention in the last few years, as they are vividly implicated in tumor immune escape mechanisms. In this review, we specifically discuss the multifaceted roles of MDSCs in lung tumor microenvironment, encompassing lung tumor growth and progression via suppression of anti-tumor immunity, association with worse prognosis, and hampering the efficacy of lung cancer chemotherapy and immunotherapy. In addition, we also discuss that therapeutic manipulation of MDSCs-targeting, either alone or in combination with chemo- and/or immune-therapeutic regimens, may not only have tumor growth inhibition, anti-angiogenesis and anti-metastasis effects, but may also have the potential to enhance the efficacy of lung cancer chemotherapy and immunotherapy.


Assuntos
Antineoplásicos/uso terapêutico , Imunoterapia/métodos , Neoplasias Pulmonares/tratamento farmacológico , Células Supressoras Mieloides/efeitos dos fármacos , Evasão Tumoral/efeitos dos fármacos , Animais , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral
15.
Curr Alzheimer Res ; 13(12): 1346-1355, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27033055

RESUMO

Neuroinflammation has emerged as an important cause of cognitive decline during aging and in Alzheimer's disease (AD). Chronic low-grade inflammation is observed in obesity and diabetes, which are important risk factors for AD. Therefore, we examined the markers of inflammation in the brain hippocampal samples of Zucker diabetic fatty (ZDF) rats. Pathway-specific gene expression profiling revealed significant increases in the expression of oxidative stress and inflammatory genes. Western blot analysis further showed the activation of NF-kB, defective CREB phosphorylation, and decreases in the levels of neuroprotective CREB target proteins, including Bcl-2, BDNF, and BIRC3 in the diabetic rat brain samples, all of which are related to AD pathology. As therapies based on glucagon-like peptide-1 (GLP-1) are effective in controlling blood glucose levels in type 2 diabetic patients, we tested the in vivo actions of GLP-1 in the diabetic brain by a 10-wk treatment of ZDF rats with alogliptin, an inhibitor of dipeptidyl peptidase. Alogliptin increased the circulating levels of GLP-1 by 125% and decreased blood glucose in diabetic rats by 59%. Normalization of defective signaling to CREB in the hippocampal samples of treated diabetic rats resulted in the increased expression of CREB targets. Dual actions of GLP-1 in the pancreatic beta cells and in the brain suggest that incretin therapies may reduce cognitive decline in the aging diabetic patients and also have the potential to be used in treating Alzheimer's patients.


Assuntos
Doença de Alzheimer/fisiopatologia , Encéfalo/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Peptídeo 1 Semelhante ao Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Animais , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Encéfalo/imunologia , Citocinas/genética , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Peptídeo 1 Semelhante ao Glucagon/genética , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina/sangue , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Ratos , Ratos Zucker , Transdução de Sinais/efeitos dos fármacos , Transcriptoma , Uracila/análogos & derivados , Uracila/farmacologia , Uracila/uso terapêutico
16.
Tumour Biol ; 37(4): 5551-60, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26572153

RESUMO

Lung cancer is the leading cause of cancer deaths worldwide; the study of microRNAs gives new hope for lung cancer treatment. miR-411 has been demonstrated to be an independent prognostic factor for lung adenocarcinoma, but the role and regulatory mechanism are largely unknown. In the present study, we found miR-411 was overexpressed in the lung cancer cells; overexpression of miR-411 promoted anchorage-dependent and anchorage-independent growths of lung cancer, while miR-411 knockdown reduced this effect. Further study showed forkhead box O1 (FOXO1) was a target of miR-411. Overexpression of miR-411 suppressed the expression of FOXO1; the effect of suppression was abrogated when the mutation occurred in the 3'UTR of FOXO1. Knockdown of FOXO1 in cells which miR-411 was inhibited recapitulated the phenotype of miR-411 overexpression. Taken together, our study revealed miR-411 promoted cell proliferation of lung cancer by targeting tumor suppressor gene FOXO1 and miR-411 might be a potential target for lung cancer therapy.


Assuntos
Proteína Forkhead Box O1/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteína Forkhead Box O1/biossíntese , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , MicroRNAs/biossíntese
17.
J Neurochem ; 136(5): 918-30, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26677139

RESUMO

Communications between neurons and glial cells play an important role in regulating homeostasis in the central nervous system. cAMP response element-binding protein (CREB), a transcription factor, is down-regulated by neurotoxins, which are known to be released by activated glial cells. To determine the role of CREB signaling in neuroglial interactions, we used three neuroglial coculture models consisting of human neuroprogenitor cell (NPC)-derived neurons and human microglia. Conditioned medium from the Abeta (Aß)-activated microglia decreased CREB phosphorylation and brain-derived neurotrophic factor promoter activity (47%), whereas the same medium induced (p < 0.01) the promoter of CXCL10, a chemokine, in NPC-derived neuron-rich cultures. These effects were reversed when microglia were exposed to Aß in the presence of minocycline, an anti-inflammatory agent. The expression of CREB targets, including brain-derived neurotrophic factor, synapsin-1, and BIRC3 decreased by 50-65% (p < 0.01) in neurons isolated by laser capture microdissection in close proximity of microglia in neuroglial mixed cultures. Neuronal survival actively modulated microglial behavior when neurons and microglia were cocultured side-by-side on semicircles of ACLAR membrane. Neuronal injury, caused by the over-expression of dominant negative form of CREB, exacerbated Aß-mediated microglial activation, whereas CREB over-expression resulted in decreased microglial activation. Decreases in the levels of neuronal markers were observed when NPCs were differentiated in the presence of proinflammatory cytokines IL-1ß, tumor necrosis factor α, or IL-6. Instead, the NPCs differentiated into a glial phenotype, and these effects were more pronounced in the presence of tumor necrosis factor α. Our findings suggest that CREB down-regulation is an important component of defective neuroglial communications in the brain during neuroinflammation. Neuroglial interactions were examined using coculture models of human neuroprogenitor cell-derived neurons and microglia isolated from human fetal brain. A novel coculture model of neurons and microglia cultured on ACLAR membranes in the same dish was also included. In this model, over-expression of the dominant negative mutant form of the transcription factor CREB in neurons induced neuronal apoptosis and microglial activation whereas expression of the wild type form of CREB resulted in protection of neurons and suppressed microglial activity, thereby suggesting that neurons play an active role in neuroglial interactions.


Assuntos
Apoptose/fisiologia , Diferenciação Celular/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Microglia/citologia , Neurônios/citologia , Animais , Apoptose/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Regulação para Baixo , Feminino , Camundongos , Microglia/efeitos dos fármacos , Transdução de Sinais/fisiologia
18.
Eur J Pharmacol ; 755: 42-9, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25720341

RESUMO

Incretin therapies are effective in controlling blood glucose levels in type 2 diabetic patients by improving the survival and function of ß-cells. They include dipeptidyl peptidase-4 (DPP-4) inhibitors and long-acting glucagon-like peptide-1 (GLP-1) analogs. We have previously reported that GLP-1 enhances the survival of cultured human islets by activation of the transcription factor CREB. To test the in vivo relevance of these findings, we examined the effects of alogliptin, a DPP-4 inhibitor, in Zucker Diabetic rats, a model for type 2 diabetes. The plasma levels of GLP-1 increased in alogliptin-treated diabetic rats leading to normoglycemia. Pancreatic islets of untreated diabetic rats were characterized by decreased immunostaining for insulin and PDX-1. Elevation of GLP-1 in treated diabetic rats resulted in the improved survival of ß-cells. Dual immunofluorescent staining showed phosphorylation/activation of CREB in insulin-positive ß-cells of islets. This led to increases in the levels of CREB targets including Bcl-2, an antiapoptotic mitochondrial protein, BIRC3, a caspase inhibitor and IRS-2, an adapter protein needed for insulin signaling. Findings from this study suggest potential activation of cytoprotective CREB by GLP-1 in pancreatic ß-cells of diabetic patients undergoing incretin-based therapies.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Piperidinas/farmacologia , Uracila/análogos & derivados , Animais , Proteína 3 com Repetições IAP de Baculovírus , Glicemia/análise , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Tipo 2/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Insulina/sangue , Proteínas Substratos do Receptor de Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Zucker , Triglicerídeos/sangue , Uracila/farmacologia
19.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 33(9): 1252-5, 2013 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-24273984

RESUMO

OBJECTIVE: To observe whether Xuefu Zhuyu Decoction (XZD) could induce the differentiation of mesenchymal stem cells (MSCs) into cardiac myoid cells, thus seeking for safe and effective inducers. METHODS: The serum pharmacological method was used to induce. XZD containing serum was prepared. MSCs were isolated and cultured. The serum cytotoxicity was detected by MTT. The third generation of favorably grown cells was selected in this experiment. Cells were divided into three groups, i.e., the vehicle control group, the XZD containing serum induced group, and the 5-azacytidine induced group. Expressions of Desmin and alpha-actin were detected by immunocytochemical staining method. RESULTS: Before induction protein expressions of Desmin and alpha-actin were negative, and few was weakly positive. There was no statistical difference in the weak positive expression rate among the 3 groups (P > 0.05). After induction protein expressions of Desmin and alpha-actin were negative, and few was weakly positive in the vehicle control group. Protein expressions of Desmin and alpha-actin were positive in the XZC containing serum induced group and the 5-azacytidine induced group. There was statistical difference in the positive expression rate when compared with the vehicle control group (P > 0.05). CONCLUSIONS: XZD played a role in in vitro inducing differentiation MSCs to cardiac myoid cells. It might participate in expressions of Desmin and alpha-actin.


Assuntos
Actinas/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Desmina/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Células Cultivadas , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Ratos , Ratos Wistar , Soro
20.
Hum Gene Ther ; 23(2): 238-42, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21981760

RESUMO

C-C chemokine receptor type 5 (CCR5) is a major co-receptor for the entry of human immunodeficiency virus type-1 (HIV-1) into target cells. Human hematopoietic stem cells (hHSCs) with naturally occurring CCR5 deletions (Δ32) or artificially disrupted CCR5 have shown potential for curing acquired immunodeficiency syndrome (AIDS). However, Δ32 donors are scarce, heterologous bone marrow transplantation is not exempt of risks, and genetic engineering of autologous hHSCs is not trivial. Here, we have disrupted the CCR5 locus of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) using specific zinc finger nucleases (ZFNs) combined with homologous recombination. The modified hESCs and hiPSCs retained pluripotent characteristics and could be differentiated in vitro into CD34(+) cells that formed all types of hematopoietic colonies. Our results suggest the potential of using patient-specific hHSCs derived from ZFN-modified hiPSCs for treating AIDS.


Assuntos
Antígenos CD34/metabolismo , Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Receptores CCR5/genética , Antígenos CD34/imunologia , Diferenciação Celular/imunologia , Linhagem Celular , Desoxirribonucleases/genética , Desoxirribonucleases/metabolismo , Células-Tronco Embrionárias/imunologia , Citometria de Fluxo , Imunofluorescência , Inativação Gênica , Engenharia Genética , Vetores Genéticos , Recombinação Homóloga , Humanos , Células-Tronco Pluripotentes Induzidas/imunologia , Receptores CCR5/imunologia , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA