Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
BMC Genomics ; 23(1): 705, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253734

RESUMO

BACKGROUND: Elongases of very long chain fatty acids (ELOVLs), a family of first rate-limiting enzymes in the synthesis of long-chain fatty acids, play an essential role in the biosynthesis of complex lipids. Disrupting any of ELOVLs affects normal growth and development in mammals. Genetic variations in ELOVLs are associated with backfat or intramuscular fatty acid composition in livestock. However, the effects of ELOVL gene family on breeding selection and lipid deposition in different tissues are still unknown in chickens. RESULTS: Genetic variation patterns and genetic associations analysis showed that the genetic variations of ELOVL genes were contributed to breeding selection of commercial varieties in chicken, and 14 SNPs in ELOVL2-6 were associated with body weight, carcass or fat deposition traits. Especially, one SNP rs17631638T > C in the promoter of ELOVL3 was associated with intramuscular fat content (IMF), and its allele frequency was significantly higher in native and layer breeds compared to that in commercial broiler breeds. Quantitative real-time PCR (qRT-PCR) determined that the ELOVL3 expressions in pectoralis were affected by the genotypes of rs17631638T > C. In addition, the transcription levels of ELOVL genes except ELOVL5 were regulated by estrogen in chicken liver and hypothalamus with different regulatory pathways. The expression levels of ELOVL1-6 in hypothalamus, liver, abdominal fat and pectoralis were correlated with abdominal fat weight, abdominal fat percentage, liver lipid content and IMF. Noteworthily, expression of ELOVL3 in pectoralis was highly positively correlated with IMF and glycerophospholipid molecules, including phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl glycerol and phospholipids inositol, rich in ω-3 and ω-6 long-chain unsaturated fatty acids, suggesting ELOVL3 could contribute to intramuscular fat deposition by increasing the proportion of long-chain unsaturated glycerophospholipid molecules in pectoralis. CONCLUSIONS: In summary, we demonstrated the genetic contribution of ELOVL gene family to breeding selection for specialized varieties, and revealed the expression regulation of ELOVL genes and their potential roles in regulating lipid deposition in different tissues. This study provides new insights into understanding the functions of ELOVL family on avian growth and lipid deposition in different tissues and the genetic variation in ELOVL3 may aid the marker-assisted selection of meat quality in chicken.


Assuntos
Galinhas , Ácidos Graxos Ômega-3 , Animais , Estrogênios , Etanolaminas , Elongases de Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Glicerofosfolipídeos , Inositol , Mamíferos/metabolismo , Fosfatidilcolinas , Fosfatidilgliceróis , Fosfolipídeos
2.
Int J Endocrinol ; 2022: 6600158, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35103060

RESUMO

OBJECTIVE: Estrogen is a critical hormone that is mainly produced by the ovary in females. Estrogen deficiency leads to various syndromes and diseases, partly due to gut microbiota alterations. Previous studies have shown that estrogen deficiency affects the gut microbiota at 6-8 weeks after ovariectomy, but the immediate effect of estrogen deficiency on the gut microbiota remains poorly understood. METHODS: To investigate the short time and dynamic effects of decreased estrogen levels on the gut microbiota and their potential impact on estrogen deficiency-related diseases, we performed metagenomic sequencing of 260 fecal samples from 50 ovariectomy (OVX) and 15 control C57BL/6 female mice at four time points after surgery. RESULTS: We found that seven gut microbiota species, including E. coli, Parabacteroides unclassified, Lachnospiraceae bacterium 8_1_57FAA, Bacteroides uniformis, Veillonella unclassified, Bacteroides xylanisolvens, and Firmicutes bacterium M10_2, were abundant in OVX mice. The abundance of these species increased with time after OVX surgery. The relative abundance of the opportunistic pathogen E. coli and the Crohn's disease-related Veillonella spp. was significantly correlated with mouse weight gain in the OVX group. Butyrate production and the Entner-Doudoroff pathway were significantly enriched in the control mouse group, while the degradation of glutamic acid and aspartic acid was enriched in the OVX mouse group. As the time after OVX surgery increased, the bacterial species and metabolic pathways significantly changed and tended to suggest an inflammatory environment, indicating a subhealthy state of the gut microbiota in the OVX mouse group. CONCLUSIONS: Taken together, our results show that the dynamic gut microbiota profile alteration caused by estrogen deficiency is related to obesity and inflammation, which may lead to immune and metabolic disorders. This study provides new clues for the treatment of estrogen deficiency-related diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA