Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmacol Rep ; 76(2): 263-272, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472637

RESUMO

Renal tubulointerstitial fibrosis (RTIF) is a common feature and inevitable consequence of all progressive chronic kidney diseases, leading to end-stage renal failure regardless of the initial cause. Although research over the past few decades has greatly improved our understanding of the pathophysiology of RTIF, until now there has been no specific treatment available that can halt the progression of RTIF. Norcantharidin (NCTD) is a demethylated analogue of cantharidin, a natural compound isolated from 1500 species of medicinal insect, the blister beetle (Mylabris phalerata Pallas), traditionally used for medicinal purposes. Many studies have found that NCTD can attenuate RTIF and has the potential to be an anti-RTIF drug. This article reviews the recent progress of NCTD in the treatment of RTIF, with emphasis on the pharmacological mechanism of NCTD against RTIF.


Assuntos
Nefropatias , Humanos , Nefropatias/tratamento farmacológico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Fibrose
2.
J Biol Chem ; 298(3): 101623, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35074427

RESUMO

Arabidopsis LHP1 (LIKE HETEROCHROMATIN PROTEIN 1), a unique homolog of HP1 in Drosophila, plays important roles in plant development, growth, and architecture. In contrast to specific binding of the HP1 chromodomain to methylated H3K9 histone tails, the chromodomain of LHP1 has been shown to bind to both methylated H3K9 and H3K27 histone tails, and LHP1 carries out its function mainly via its interaction with these two epigenetic marks. However, the molecular mechanism for the recognition of methylated histone H3K9/27 by the LHP1 chromodomain is still unknown. In this study, we characterized the binding ability of LHP1 to histone H3K9 and H3K27 peptides and found that the chromodomain of LHP1 binds to histone H3K9me2/3 and H3K27me2/3 peptides with comparable affinities, although it exhibited no binding or weak binding to unmodified or monomethylated H3K9/K27 peptides. Our crystal structures of the LHP1 chromodomain in peptide-free and peptide-bound forms coupled with mutagenesis studies reveal that the chromodomain of LHP1 bears a slightly different chromodomain architecture and recognizes methylated H3K9 and H3K27 peptides via a hydrophobic clasp, similar to the chromodomains of human Polycomb proteins, which could not be explained only based on primary structure analysis. Our binding and structural studies of the LHP1 chromodomain illuminate a conserved ligand interaction mode between chromodomains of both animals and plants, and shed light on further functional study of the LHP1 protein.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Histonas , Fatores de Transcrição , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Metilação , Peptídeos/química
3.
Nat Chem Biol ; 18(1): 56-63, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34782742

RESUMO

Nuclear receptor-binding SET domain-containing 2 (NSD2) is the primary enzyme responsible for the dimethylation of lysine 36 of histone 3 (H3K36), a mark associated with active gene transcription and intergenic DNA methylation. In addition to a methyltransferase domain, NSD2 harbors two proline-tryptophan-tryptophan-proline (PWWP) domains and five plant homeodomains (PHDs) believed to serve as chromatin reading modules. Here, we report a chemical probe targeting the N-terminal PWWP (PWWP1) domain of NSD2. UNC6934 occupies the canonical H3K36me2-binding pocket of PWWP1, antagonizes PWWP1 interaction with nucleosomal H3K36me2 and selectively engages endogenous NSD2 in cells. UNC6934 induces accumulation of endogenous NSD2 in the nucleolus, phenocopying the localization defects of NSD2 protein isoforms lacking PWWP1 that result from translocations prevalent in multiple myeloma (MM). Mutations of other NSD2 chromatin reader domains also increase NSD2 nucleolar localization and enhance the effect of UNC6934. This chemical probe and the accompanying negative control UNC7145 will be useful tools in defining NSD2 biology.


Assuntos
Nucléolo Celular/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Sondas Moleculares/química , Domínios Proteicos , Proteínas Repressoras/metabolismo , Metilação , Mieloma Múltiplo/metabolismo , Nucleossomos/metabolismo
4.
Nat Commun ; 10(1): 36, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30604749

RESUMO

MLL3 and MLL4 are two closely related members of the SET1/MLL family of histone H3K4 methyltransferases and are responsible for monomethylating histone H3K4 on enhancers, which are essential in regulating cell-type-specific gene expression. Mutations of MLL3 or MLL4 have been reported in different types of cancer. Recently, the PHD domains of MLL3/4 have been reported to recruit the MLL3/4 complexes to their target genes by binding to histone H4 during the NT2/D1 stem cell differentiation. Here we show that an extended PHD domain (ePHD6) involving the sixth PHD domain and its preceding zinc finger in MLL3 and MLL4 specifically recognizes an H4H18-containing histone H4 fragment and that modifications of residues surrounding H4H18 modulate H4 binding to MLL3/4. Our in vitro methyltransferase assays and cellular experiments further reveal that the interaction between ePHD6 of MLL3/4 and histone H4 is required for their nucleosomal methylation activity and MLL4-mediated neuronal differentiation of NT2/D1 cells.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Dedos de Zinco PHD , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/química , Elementos Facilitadores Genéticos , Células HEK293 , Histona-Lisina N-Metiltransferase , Histonas/genética , Humanos , Metilação , Nucleossomos/metabolismo , Ligação Proteica/genética , Processamento de Proteína Pós-Traducional
5.
Genes Dev ; 32(5-6): 341-346, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29563185

RESUMO

The mixed-lineage leukemia (MLL)-AF10 fusion oncoprotein recruits DOT1L to the homeobox A (HOXA) gene cluster through its octapeptide motif leucine zipper (OM-LZ), thereby inducing and maintaining the MLL-AF10-associated leukemogenesis. However, the recognition mechanism between DOT1L and MLL-AF10 is unclear. Here, we present the crystal structures of both apo AF10OM-LZ and its complex with the coiled-coil domain of DOT1L. Disruption of the DOT1L-AF10 interface abrogates MLL-AF10-associated leukemic transformation. We further show that zinc stabilizes the DOT1L-AF10 complex and may be involved in the regulation of the HOXA gene expression. Our studies may also pave the way for the rational design of therapeutic drugs against MLL-rearranged leukemia.


Assuntos
Transformação Celular Neoplásica/patologia , Metiltransferases , Modelos Moleculares , Proteína de Leucina Linfoide-Mieloide , Fatores de Transcrição , Cristalização , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase , Proteínas de Homeodomínio/genética , Humanos , Metiltransferases/química , Metiltransferases/metabolismo , Proteína de Leucina Linfoide-Mieloide/química , Proteína de Leucina Linfoide-Mieloide/metabolismo , Ligação Proteica , Domínios Proteicos , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Zinco/química
6.
RSC Adv ; 8(40): 22530-22535, 2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35539710

RESUMO

Two analogues of capsule-like fluorescent cages have been constructed by dimerization of terpyridine-containing calixarene derivatives utilizing a MII-terpyridine (M = Zn and Cd) interaction. 1H NMR spectral studies show that the self-assembled molecular capsules Zn4L12 and Cd4L12 have a highly symmetrical D 4h-structure. The encapsulation of the anticancer drug mercaptopurine in their cavities has been documented by NMR, ESI-TOF-MS, fluorescence switching, and molecular simulation, indicating that strong S-π and π-π interactions between drug and cage are of importance for the host-guest binding. The nanoscale cages exhibit excellent behaviors to control the release of mercaptopurine in phosphate buffered saline solution (pH = 7.4). These results further highlight the potential of self-assembled Zn4L12 cages for drug-carrier applications.

7.
Cancer Biomark ; 21(3): 711-722, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29278883

RESUMO

OBJECTIVE: MicroRNAs are widely thought to play a regulatory role in gene expression. Although the more unique microRNA expression profiles have been reported in several tumors, there remains a scarcity of knowledge in relation to microRNA expression profiles in GISTs. During this study, through the alteration in the expression of microRNA-152 (miR-152) in gastrointestinal stromal tumor (GIST) cells, we subsequently evaluated its ability to influence the processes associated with cancer, including proliferation, migration, invasion, and apoptosis, as well as the associated mechanisms. METHODS: The expression of miR-152 and cathepsin L (CTSL) in GIST cell lines (GIST882, GIST430, GIST48 and GIST-T1) and normal gastric mucosal cell line RGM-1 were determined. A series of miR-152 mimics, miR-152 inhibitors, and siRNA against CTSL were introduced to treat GIST-T1 cells with the lowest miR-152 and the highest CTSL were assessed. Cell viability, cell cycle entry, apoptosis, and cell migration/invasion were all evaluated by means of CCK-8 assay, flow cytometry analyses of Annexin V-FITC/PI staining, and transwell assays. RESULTS: The target prediction program and luciferase reporter gene assay verified CTSL is the target of miR-152. Regarding the biological significance of miR-152, siRNA knockdown and ectopic expression studies revealed that miR-152 mimic or siRNA against CTSL exposure reduced cell viability and migration/invasion, which resulted in more cells arrested at the S stage, and induced apoptosis. MiR-152 inhibitor exposure was observed to have induced effects on CTSL cells as opposed to those induced by that of the miR-152 mimics. In contrast, miR-152 downregulation abrogated the effects induced by siRNA against CTSL treatment. CONCLUSION: The key findings of this study provided evidence suggesting that miR-152 functions by means of binding to CTSL to induce GIST cell apoptosis and inhibit proliferation, migration, and invasion. The anti-tumor role of miR-152 makes it an attractive therapeutic target for GIST.


Assuntos
Apoptose/genética , Catepsina L/genética , Tumores do Estroma Gastrointestinal/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Interferência de RNA , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Sobrevivência Celular/genética , Humanos
8.
Appl Physiol Nutr Metab ; 42(10): 1082-1091, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28636830

RESUMO

Our previous work showed that purple sweet potato colour (PSPC), a class of naturally occurring anthocyanins, effectively improved hepatic glucose metabolic dysfunction in high-fat-diet (HFD)-treated mice. This study investigated the effects of PSPC on HFD-induced hepatic steatosis and the signalling events associated with these effects. Mice were divided into 4 groups: control group, HFD group, HFD+PSPC group, and PSPC group. PSPC was administered daily for 20 weeks at oral doses of 700 mg/(kg·day)-1). Our results showed that PSPC significantly improved obesity and related metabolic parameters, as well as liver injury in HFD-treated mice. Moreover, PSPC dramatically attenuated hepatic steatosis in HFD-treated mice. PSPC markedly prevented oxidative stress-mediated Src activation in HFD-treated mouse livers. Furthermore, PSPC feeding remarkably suppressed mitogen-activated protein kinase kinase/extracellular-signal-regulated kinase (MEK/ERK) signalling and consequent CCAAT/enhancer binding protein ß (C/EBPß) activation and restored AMPK activation in HFD-treated mouse livers, which was confirmed by U0126 treatment. Ultimately, PSPC feeding dramatically reduced protein expression of FAS and CD36 and the activation of ACC, and increased the protein expression of CPT1A in the livers of HFD-treated mice, indicating decreased lipogenesis and fatty acid uptake and enhanced fatty acid oxidation. In conclusion, PSPC exhibited beneficial effects on hepatic steatosis, which were associated with blocking Src and C/EBPß activation.


Assuntos
Antocianinas/farmacologia , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Dieta Hiperlipídica , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Ipomoea batatas , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Pigmentos Biológicos/farmacologia , Quinases da Família src/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/metabolismo , Animais , Antocianinas/isolamento & purificação , Antígenos CD36/metabolismo , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Ativação Enzimática , Ipomoea batatas/química , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos Endogâmicos ICR , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/enzimologia , Obesidade/patologia , Obesidade/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia , Pigmentos Biológicos/isolamento & purificação , Plantas Medicinais , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Receptor fas/metabolismo
9.
Asian Pac J Trop Med ; 10(5): 524-527, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28647192

RESUMO

OBJECTIVE: To analyse the genetic variability of EG95 sequences and provide guidance for EG95 vaccine application against Echinococcus granulosus (E. granulosus). METHODS: We analysed EG95 polymorphism by collecting total 97 different E. granulosus isolates from 12 different host species that originated from 10 different countries. Multiple sequence alignments and the homology were performed by Lasergene 1 (DNASTAR Inc., Madison, WI), and the phylogenetic analysis was performed by using MEGA5.1 (CEMI, Tempe, AZ, USA). In addition, linear and conformational epitopes were analysed, including secondary structure, NXT/S glycosylation, fibronectin type III (FnIII) domain and glycosylphosphatidylinositol anchor signal (GPI-anchor). The secondary structure was predicted by PSIPRED method. RESULTS: Our results indicated that most isolates overall shared 72.6-100% identity in EG95 gene sequence with the published standard EG95 sequence, X90928. However, EG95 gene indeed has polymorphism in different isolates. Phylogenetic analysis showed that different isolates could be divided into three subgroups. Subgroup 1 contained 87 isolates while Subgroup 2 and Subgroup 3 consisted of 3 and 7 isolates, respectively. Four sequences cloned from oncosphere shared a high identity with the parental sequence of the current vaccine, X90928, and they belonged to Subgroup 1. However, in comparison to X90928, several amino acid mutations occurred in most isolates besides oncosphere, which potentially altered the immunodominant linear epitopes, glycosylation sites and secondary structures in EG95 genes. All these variations might change their previous antigenicity and thereby affecting the efficacy of current EG95 vaccine. CONCLUSIONS: This study reveals the genetic variability of EG95 sequences in different E. granulosus isolates, and proposed that more vaccination trials would be needed to test the effectiveness of current EG95 vaccine against distinct isolates in different countries.

10.
Nat Chem Biol ; 12(3): 180-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26807715

RESUMO

We report the design and characterization of UNC3866, a potent antagonist of the methyllysine (Kme) reading function of the Polycomb CBX and CDY families of chromodomains. Polycomb CBX proteins regulate gene expression by targeting Polycomb repressive complex 1 (PRC1) to sites of H3K27me3 via their chromodomains. UNC3866 binds the chromodomains of CBX4 and CBX7 most potently, with a K(d) of ∼100 nM for each, and is 6- to 18-fold selective as compared to seven other CBX and CDY chromodomains while being highly selective over >250 other protein targets. X-ray crystallography revealed that UNC3866's interactions with the CBX chromodomains closely mimic those of the methylated H3 tail. UNC4195, a biotinylated derivative of UNC3866, was used to demonstrate that UNC3866 engages intact PRC1 and that EED incorporation into PRC1 is isoform dependent in PC3 prostate cancer cells. Finally, UNC3866 inhibits PC3 cell proliferation, consistent with the known ability of CBX7 overexpression to confer a growth advantage, whereas UNC4219, a methylated negative control compound, has negligible effects.


Assuntos
Oligopeptídeos/farmacologia , Complexo Repressor Polycomb 1/antagonistas & inibidores , Complexo Repressor Polycomb 1/genética , Animais , Disponibilidade Biológica , Biotinilação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Regulação da Expressão Gênica/genética , Humanos , Isomerismo , Ligases , Masculino , Metilação , Camundongos , Modelos Moleculares , Complexo Repressor Polycomb 1/biossíntese , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Especificidade por Substrato , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
11.
Biochem J ; 473(2): 179-87, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26527736

RESUMO

TXNIP (thioredoxin-interacting protein) negatively regulates the antioxidative activity of thioredoxin and participates in pleiotropic cellular processes. Its deregulation is linked to various human diseases, including diabetes, acute myeloid leukaemia and cardiovascular diseases. The E3 ubiquitin ligase Itch (Itchy homologue) polyubiquitinates TXNIP to promote its degradation via the ubiquitin-proteasome pathway, and this Itch-mediated polyubiquitination of TXNIP is dependent on the interaction of the four WW domains of Itch with the two PPxY motifs of TXNIP. However, the molecular mechanism of this interaction of TXNIP with Itch remains elusive. In the present study, we found that each of the four WW domains of Itch exhibited different binding affinities for TXNIP, whereas multivalent engagement between the four WW domains of Itch and the two PPxY motifs of TXNIP resulted in their strong binding avidity. Our structural analyses demonstrated that the third and fourth WW domains of Itch were able to recognize both PPxY motifs of TXNIP simultaneously, supporting a multivalent binding mode between Itch and TXNIP. Interestingly, the phosphorylation status on the tyrosine residue of the PPxY motifs of TXNIP serves as a molecular switch in its choice of binding partners and thereby downstream biological signalling outcomes. Phosphorylation of this tyrosine residue of TXNIP diminished the binding capability of PPxY motifs of TXNIP to Itch, whereas this phosphorylation is a prerequisite to the binding activity of TXNIP to SHP2 [SH2 (Src homology 2) domain-containing protein tyrosine phosphatase 2] and their roles in stabilizing the phosphorylation and activation of CSK (c-Src tyrosine kinase).


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/genética , Prolina/análogos & derivados , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Humanos , Dados de Sequência Molecular , Fosforilação/fisiologia , Prolina/química , Prolina/genética , Prolina/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
12.
Genes Dev ; 29(22): 2343-8, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26543161

RESUMO

α-N-terminal methylation represents a highly conserved and prevalent post-translational modification, yet its biological function has remained largely speculative. The recent discovery of α-N-terminal methyltransferase 1 (NTMT1) and its physiological substrates propels the elucidation of a general role of α-N-terminal methylation in mediating DNA-binding ability of the modified proteins. The phenotypes, observed from both NTMT1 knockdown in breast cancer cell lines and knockout mouse models, suggest the potential involvement of α-N-terminal methylation in DNA damage response and cancer development. In this study, we report the first crystal structures of human NTMT1 in complex with cofactor S-adenosyl-L-homocysteine (SAH) and six substrate peptides, respectively, and reveal that NTMT1 contains two characteristic structural elements (a ß hairpin and an N-terminal extension) that contribute to its substrate specificity. Our complex structures, coupled with mutagenesis, binding, and enzymatic studies, also present the key elements involved in locking the consensus substrate motif XPK (X indicates any residue type other than D/E) into the catalytic pocket for α-N-terminal methylation and explain why NTMT1 prefers an XPK sequence motif. We propose a catalytic mechanism for α-N-terminal methylation. Overall, this study gives us the first glimpse of the molecular mechanism of α-N-terminal methylation and potentially contributes to the advent of therapeutic agents for human diseases associated with deregulated α-N-terminal methylation.


Assuntos
Metiltransferases/química , Metiltransferases/metabolismo , Modelos Moleculares , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Motivos de Aminoácidos , Animais , Linhagem Celular Tumoral , Cristalização , Ativação Enzimática/genética , Técnicas de Silenciamento de Genes , Metilação , Metiltransferases/genética , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , S-Adenosil-Homocisteína/química
13.
Nat Commun ; 5: 3952, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24853335

RESUMO

Pathogens can interfere with vital biological processes of their host by mimicking host proteins. The NS1 protein of the influenza A H3N2 subtype possesses a histone H3K4-like sequence at its carboxyl terminus and has been reported to use this mimic to hijack host proteins. However, this mimic lacks a free N-terminus that is essential for binding to many known H3K4 readers. Here we show that the double chromodomains of CHD1 adopt an 'open pocket' to interact with the free N-terminal amine of H3K4, and the open pocket permits the NS1 mimic to bind in a distinct conformation. We also explored the possibility that NS1 hijacks other cellular proteins and found that the NS1 mimic has access to only a subset of chromatin-associated factors, such as WDR5. Moreover, methylation of the NS1 mimic can not be reversed by the H3K4 demethylase LSD1. Overall, we thus conclude that the NS1 mimic is an imperfect histone mimic.


Assuntos
Histonas/metabolismo , Interações Hospedeiro-Patógeno , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Calorimetria , Cristalografia por Raios X , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histona Desmetilases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Vírus da Influenza A Subtipo H3N2/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Espectrometria de Massas , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Relação Estrutura-Atividade
14.
Pharmacol Ther ; 143(3): 275-94, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24704322

RESUMO

Dynamic chromatin structure is modulated by post-translational modifications on histones, such as acetylation, phosphorylation and methylation. Research on histone methylation has become the most flourishing area of epigenetics in the past fourteen years, and a large amount of data has been accumulated regarding its biology and disease implications. Correspondingly, a lot of efforts have been made to develop small molecule compounds that can specifically modulate histone methyltransferases and methylation reader proteins, aiming for potential therapeutic drugs. Here, we summarize recent progress in chemical probe and drug discovery of histone methyltransferases and methylation reader proteins. For each target, we will review their biological/biochemical functions first, and then focus on their disease implications and drug discovery. We can also see that structure-based compound design and optimization plays a critical role in facilitating the development of highly potent and selective chemical probes and inhibitors for these targets.


Assuntos
Descoberta de Drogas , Epigênese Genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Proteínas de Transporte/metabolismo , Humanos , Metilação , Estrutura Terciária de Proteína
15.
J Laparoendosc Adv Surg Tech A ; 23(3): 246-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23379918

RESUMO

UNLABELLED: Abstract Background: In laparoscopic surgery with CO2 pneumoperitoneum, serious complications often occur for elderly patients and those who undergo long operations. These complications mainly include respiratory and circulatory system changes. In patients with tumors, release of free tumor cells into the abdominal cavity is believed to be possible. Gasless laparoscopic techniques can avoid these complications of CO2 pneumoperitoneum. Currently, the main shortcoming of gasless laparoscopic techniques is inadequate operative space. Because of this shortcoming, gasless techniques have not been widely applied in clinical practice. MATERIALS AND METHODS: We herein describe a new technique of gasless laparoscopic cholecystectomy in pigs using a self-designed umbrella-like abdominal wall-lifting device. This device lifts up the anterior abdominal wall by opening the umbrella leaf in the abdominal cavity. RESULTS: Five pigs underwent laparoscopic cholecystectomy using this technique. The operation times were 85, 40, 28, 21, and 24 minutes. The corresponding bleeding volumes were 11, 20, 5, 2, and 8 mL. CONCLUSIONS: These preliminary outcomes suggest that the umbrella-like abdominal wall-lifting technique is safe and feasible in gasless laparoscopic surgery and can provide sufficient exposure of the operative field. Further study in the form of randomized controlled trials is needed to investigate the advantages of this new technique.


Assuntos
Laparoscopia/instrumentação , Laparoscopia/métodos , Parede Abdominal , Animais , Desenho de Equipamento , Masculino , Suínos , Porco Miniatura
16.
Talanta ; 101: 362-7, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23158335

RESUMO

Hot electron-induced cathodic electrochemiluminescence of the Ru(bpy)(3)(2+)/S(2)O(8)(2-) system was investigated at an oil film-covered carbon paste electrode (CPE) under cathodic pulse polarization for the first time. Compared with other electrodes, the CPE is of lower background, better stability and reproducibility. The method is also applied to the determination of catechol. Under the optimum conditions, the linear correlation between the quenched ECL intensity (ΔI) and the logarithm of catechol concentration (logC(catechol)) was observed over the range of 2.0×10(-10) mol/L-4.0×10(-9) mol/L and 4.0×10(-9) mol/L-4.0×10(-7) mol/L with the limit of detection (LOD) of 2.0×10(-10) mol/L, which is lower than the other reported methods. The proposed method is applied to determine catechol in reservoir water. The mean recoveries of 83.3%-99.0% and the relative standard deviations (RSDs) of 0.8%-2.2% were obtained.

17.
Biochemistry ; 48(29): 6824-34, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19469552

RESUMO

Human PDCD5 protein is a novel programmed cell death-promoting molecule. However, the function of Ymr074cP, a S. cerevisiae homologue of hPDCD5, is still unknown. Heteronuclear NMR methods were used to determine the solution structure of the N-terminal 116-residue fragment (N116) of Ymr074cP protein. N116 is shown to be a heterogeneous ensemble of flexibly folded conformations, adopting an extended triple-helix bundle fold that is connected to a mobile but structured alpha-helix in the N-terminus by means of a lengthy highly flexible linker. By the nitroxide spin label, attached to the mutant cysteine residue at position 7 or 11, significant transient interactions were probed between the N-terminal helical portion and the core moiety plus several residues in the C-terminal tail. The topology of the triple-helix bundle is encoded mainly by hydrophobic interactions, and the N-terminal helical structure has a unique electrostatic potential character. A comparison of the solution structures of PDCD5-related proteins indicates that the structure of the triple-helix bundle is significantly conserved during evolution. We are the first to demonstrate that YMR074c overexpression promotes H(2)O(2)-induced apoptosis in yeast, not only in a metacaspase Yca1-dependent manner but also in a Yca1-independent manner and that deletion of the N-terminal helical portion greatly attenuates the apoptosis-promoting activity of this protein.


Assuntos
Apoptose/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/efeitos dos fármacos , Sequência de Aminoácidos , Sequência de Bases , Western Blotting , Dicroísmo Circular , DNA , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Saccharomyces cerevisiae/citologia , Homologia de Sequência de Aminoácidos , Espectrofotometria Ultravioleta , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA