Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Aging (Albany NY) ; 16(6): 5412-5434, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38484369

RESUMO

BACKGROUND: Coronavirus disease-2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a newly emerging coronavirus. BSG (basigin) is involved in the tumorigenesis of multiple tumors and recently emerged as a novel viral entry receptor for SARS-CoV-2. However, its expression profile in normal individuals and cancer patients are still unclear. METHODS: We performed a comprehensive analysis of the expression and distribution of BSG in normal tissues, tumor tissues, and cell lines via bioinformatics analysis and experimental verification. In addition, we investigated the expression of BSG and its isoforms in multiple malignancies and adjacent normal tissues, and explored the prognostic values across pan-cancers. Finally, we conducted function analysis for co-expressed genes with BSG. RESULTS: We found BSG was highly conserved in different species, and was ubiquitously expressed in almost all normal tissues and significantly increased in some types of cancer tissues. Moreover, BSG at mRNA expression level was higher than ACE2 in normal lung tissues, and lung cancer tissues. High expression of BSG indicated shorter overall survival (OS) in multiple tumors. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that BSG is mostly enriched in genes for mitochondria electron transport, oxidoreduction-driven active transmembrane transporter activity, mitochondrial inner membrane, oxidative phosphorylation, and genes involving COVID-19. CONCLUSIONS: Our present work emphasized the value of targeting BSG in the treatment of COVID-19 and cancer, and also provided several novel insights for understanding the SARS-CoV-2 pandemic.


Assuntos
COVID-19 , Neoplasias Pulmonares , Humanos , COVID-19/genética , COVID-19/patologia , Expressão Gênica , Pulmão/patologia , Neoplasias Pulmonares/patologia , SARS-CoV-2
2.
Cell Mol Biol Lett ; 29(1): 32, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443798

RESUMO

RNA-binding proteins (RBPs) are kinds of proteins with either singular or multiple RNA-binding domains (RBDs), and they can assembly into ribonucleic acid-protein complexes, which mediate transportation, editing, splicing, stabilization, translational efficiency, or epigenetic modifications of their binding RNA partners, and thereby modulate various physiological and pathological processes. CUG-BP, Elav-like family 1 (CELF1) is a member of the CELF family of RBPs with high affinity to the GU-rich elements in mRNA, and thus exerting control over critical processes including mRNA splicing, translation, and decay. Mounting studies support that CELF1 is correlated with occurrence, genesis and development and represents a potential therapeutical target for these malignant diseases. Herein, we present the structure and function of CELF1, outline its role and regulatory mechanisms in varieties of homeostasis and diseases, summarize the identified CELF1 regulators and their structure-activity relationships, and prospect the current challenges and their solutions during studies on CELF1 functions and corresponding drug discovery, which will facilitate the establishment of a targeted regulatory network for CELF1 in diseases and advance CELF1 as a potential drug target for disease therapy.


Assuntos
Descoberta de Drogas , Epigênese Genética , Homeostase , RNA , RNA Mensageiro
3.
Clin Transl Med ; 14(1): e1546, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38239077

RESUMO

BACKGROUND: Radiotherapy is the main treatment modality for thoracic tumours, but it may induce pulmonary fibrosis. Currently, the pathogenesis of radiation-induced pulmonary fibrosis (RIPF) is unclear, and effective treatments are lacking. Transforming growth factor beta 1 (TGFß1) plays a central role in RIPF. We found that activated TGFß1 had better performance for radiation pneumonitis (RP) risk prediction by detecting activated and total TGFß1 levels in patient serum. αv integrin plays key roles in TGFß1 activation, but the role of αv integrin-mediated TGFß1 activation in RIPF is unclear. Here, we investigated the role of αv integrin-mediated TGFß1 activation in RIPF and the application of the integrin antagonist cilengitide to prevent RIPF. METHODS: ItgavloxP/loxP ;Pdgfrb-Cre mice were generated by conditionally knocking out Itgav in myofibroblasts, and wild-type mice were treated with cilengitide or placebo. All mice received 16 Gy of radiation or underwent a sham radiation procedure. Lung fibrosis was measured by a modified Ashcroft score and microcomputed tomography (CT). An enzyme-linked immunosorbent assay (ELISA) was used to measure the serum TGFß1 concentration, and total Smad2/3 and p-Smad2/3 levels were determined via Western blotting. RESULTS: Conditional Itgav knockout significantly attenuated RIPF (p < .01). Hounsfield units (HUs) in the lungs were reduced in the knockout mice compared with the control mice (p < .001). Conditional Itgav knockout decreased active TGFß1 secretion and inhibited fibroblast p-Smad2/3 expression. Exogenous active TGFß1, but not latent TGFß1, reversed these reductions. Furthermore, cilengitide treatment elicited similar results and prevented RIPF. CONCLUSIONS: The present study revealed that conditional Itgav knockout and cilengitide treatment both significantly attenuated RIPF in mice by inhibiting αv integrin-mediated TGFß1 activation. HIGHLIGHTS: Activated TGFß1 has a superior capacity in predicting radiation pneumonitis (RP) risk and plays a vital role in the development of radiation-induced pulmonary fibrosis (RIPF). Conditional knock out Itgav in myofibroblasts prevented mice from developing RIPF. Cilengitide alleviated the development of RIPF by inhibiting αv integrin-mediated TGFß1 activation and may be used in targeted approaches for preventing RIPF.


Assuntos
Fibrose Pulmonar , Pneumonite por Radiação , Animais , Humanos , Camundongos , Integrina alfaV/metabolismo , Integrina alfaV/farmacologia , Pulmão/metabolismo , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/genética , Pneumonite por Radiação/prevenção & controle , Pneumonite por Radiação/metabolismo , Pneumonite por Radiação/patologia , Microtomografia por Raio-X/efeitos adversos
5.
Mol Neurobiol ; 61(2): 935-949, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37672149

RESUMO

Although the benefits of electroacupuncture (EA) for peripheral nerve injury (PNI) are well accepted in clinical practice, the underlying mechanism remains incompletely elucidated. In our study, we observed that EA intervention led to a reduction in the expression of the long non-coding RNA growth-arrest-specific transcript 5 (GAS5) and an increased in miR-21 levels within the injured nerve, effectively promoting functional recovery and nerve regeneration following sciatic nerve injury (SNI). In contrast, administration of adeno-associated virus expressing GAS5 (AAV-GAS5) weakened the therapeutic effect of EA. On the other hand, both silencing GAS5 and introducing a miR-21 mimic prominently enhanced the proliferation activity and migration ability of Schwann cells (SCs), while also inhibiting SCs apoptosis. On the contrary, inhibition of SCs apoptosis was found to be mediated by miR-21. Additionally, overexpression of GAS5 counteracted the effects of the miR-21 mimic on SCs. Moreover, SCs that transfected with the miR-21 mimic promoted neurite growth in hypoxia/reoxygenation-induced neurons, which might be prevented by overexpressing GAS5. Furthermore, GAS5 was found to be widely distributed in the cytoplasm and was negatively regulated by miR-21. Consequently, the targeting of GAS5 by miR-21 represents a potential mechanism through which EA enhances reinnervation and functional restoration following SNI. Mechanistically, the GAS5/miR-21 axis can modulate the proliferation, migration, and apoptosis of SCs while potentially influencing the neurite growth of neurons.


Assuntos
Eletroacupuntura , MicroRNAs , Traumatismos dos Nervos Periféricos , RNA Longo não Codificante , Neuropatia Ciática , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismos dos Nervos Periféricos/terapia , Traumatismos dos Nervos Periféricos/metabolismo , Neuropatia Ciática/metabolismo , Regeneração Nervosa/fisiologia , Nervo Isquiático/metabolismo
6.
Cancer Biol Med ; 20(11)2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37929901

RESUMO

Cancer remains a significant global health challenge with limited treatment options beyond systemic therapies, such as chemotherapy, radiotherapy, and molecular targeted therapy. Immunotherapy has emerged as a promising therapeutic modality but the efficacy has plateaued, which therefore provides limited benefits to patients with cancer. Identification of more effective approaches to improve patient outcomes and extend survival are urgently needed. Drug repurposing has emerged as an attractive strategy for drug development and has recently garnered considerable interest. This review comprehensively analyses the efficacy of various repurposed drugs, such as transforming growth factor-beta (TGF-ß) inhibitors, metformin, receptor activator of nuclear factor-κB ligand (RANKL) inhibitors, granulocyte macrophage colony-stimulating factor (GM-CSF), thymosin α1 (Tα1), aspirin, and bisphosphonate, in tumorigenesis with a specific focus on their impact on tumor immunology and immunotherapy. Additionally, we present a concise overview of the current preclinical and clinical studies investigating the potential therapeutic synergies achieved by combining these agents with immune checkpoint inhibitors.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Reposicionamento de Medicamentos , Neoplasias/tratamento farmacológico
8.
World J Gastroenterol ; 29(26): 4186-4199, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37475840

RESUMO

BACKGROUND: Radical resection remains an effective strategy for patients with hepatocellular carcinoma (HCC). Unfortunately, the postoperative early recurrence (recurrence within 2 years) rate is still high. AIM: To develop a radiomics model based on preoperative contrast-enhanced computed tomography (CECT) to evaluate early recurrence in HCC patients with a single tumour. METHODS: We enrolled a total of 402 HCC patients from two centres who were diagnosed with a single tumour and underwent radical resection. First, the features from the portal venous and arterial phases of CECT were extracted based on the region of interest, and the early recurrence-related radiomics features were selected via the least absolute shrinkage and selection operator proportional hazards model (LASSO Cox) to determine radiomics scores for each patient. Then, the clinicopathologic data were combined to develop a model to predict early recurrence by Cox regression. Finally, we evaluated the prediction performance of this model by multiple methods. RESULTS: A total of 1915 radiomics features were extracted from CECT images, and 31 of them were used to determine the radiomics scores, which showed a significant difference between the early recurrence and nonearly recurrence groups. Univariate and multivariate Cox regression analyses showed that radiomics scores and serum alpha-fetoprotein were independent indicators, and they were used to develop a combined model to predict early recurrence. The area under the receiver operating characteristic curve values for the training and validation cohorts were 0.77 and 0.74, respectively, while the C-indices were 0.712 and 0.674, respectively. The calibration curves and decision curve analysis showed satisfactory accuracy and clinical utilities. Kaplan-Meier curves based on recurrence-free survival and overall survival showed significant differences. CONCLUSION: The preoperative radiomics model was shown to be effective for predicting early recurrence among HCC patients with a single tumour.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/cirurgia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/patologia , Tomografia Computadorizada por Raios X/métodos , Veia Porta/patologia , Curva ROC , Estudos Retrospectivos
9.
J Nanobiotechnology ; 21(1): 194, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322478

RESUMO

BACKGROUND: Polarization of microglia, the resident retinal immune cells, plays important roles in mediating both injury and repair responses post-retinal ischemia-reperfusion (I/R) injury, which is one of the main pathological mechanisms behind ganglion cell apoptosis. Aging could perturb microglial balances, resulting in lowered post-I/R retinal repair. Young bone marrow (BM) stem cell antigen 1-positive (Sca-1+) cells have been demonstrated to have higher reparative capabilities post-I/R retinal injury when transplanted into old mice, where they were able to home and differentiate into retinal microglia. METHODS: Exosomes were enriched from young Sca-1+ or Sca-1- cells, and injected into the vitreous humor of old mice post-retinal I/R. Bioinformatics analyses, including miRNA sequencing, was used to analyze exosome contents, which was confirmed by RT-qPCR. Western blot was then performed to examine expression levels of inflammatory factors and underlying signaling pathway proteins, while immunofluorescence staining was used to examine the extent of pro-inflammatory M1 microglial polarization. Fluoro-Gold labelling was then utilized to identify viable ganglion cells, while H&E staining was used to examine retinal morphology post-I/R and exosome treatment. RESULTS: Sca-1+ exosome-injected mice yielded better visual functional preservation and lowered inflammatory factors, compared to Sca-1-, at days 1, 3, and 7 days post-I/R. miRNA sequencing found that Sca-1+ exosomes had higher miR-150-5p levels, compared to Sca-1- exosomes, which was confirmed by RT-qPCR. Mechanistic analysis found that miR-150-5p from Sca-1+ exosomes repressed the mitogen-activated protein kinase kinase kinase 3 (MEKK3)/JNK/c-Jun axis, leading to IL-6 and TNF-α downregulation, and subsequently reduced microglial polarization, all of which contributes to reduced ganglion cell apoptosis and preservation of proper retinal morphology. CONCLUSION: This study elucidates a potential new therapeutic approach for neuroprotection against I/R injury, via delivering miR-150-5p-enriched Sca-1+ exosomes, which targets the miR-150-5p/MEKK3/JNK/c-Jun axis, thereby serving as a cell-free remedy for treating retinal I/R injury and preserving visual functioning.


Assuntos
Exossomos , MicroRNAs , Traumatismo por Reperfusão , Camundongos , Animais , Microglia/metabolismo , MicroRNAs/metabolismo , Exossomos/metabolismo , Traumatismo por Reperfusão/metabolismo , Células da Medula Óssea/metabolismo
10.
Skin Res Technol ; 29(6): e13337, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37357660

RESUMO

BACKGROUND: Radiation-induced skin injury, which may progress to fibrosis, is a severe side effect of radiotherapy in patients with cancer. However, currently, there is a lack of preventive or curative treatments for this injury. Meanwhile, the mechanisms underlying this injury remain poorly understood. Here, we elucidated whether autophagy is essential for the development of radiation-induced skin injury and the potential molecular pathways and mechanisms involved. METHODS AND RESULTS: We used the myofibroblast-specific Atg7 knockout (namely, conditional Atg7 knockout) mice irradiated with a single electron beam irradiation dose of 30 Gy. Vaseline-based 0.2% rapamycin ointment was topically applied once daily from the day of irradiation for 30 days. On day 30 post irradiation, skin tissues were harvested for further analysis. In vitro, human foreskin fibroblast cells were treated with rapamycin (100 nM) for 24 h and pretreated with 3-MA (5 mM) for 12 h. Macroscopic skin manifestations, histological changes, and fibrosis markers at the mRNA and protein expression levels were measured. Post irradiation, the myofibroblast-specific autophagy-deficient (Atg7Flox/Flox Cre+ ) mice had increased fibrosis marker (COL1A1, CTGF, TGF-ß1, and α-SMA) levels in the irradiated area and had more severe macroscopic skin manifestations than the control group (Atg7Flox/Flox Cre- ) mice. Treatment with an autophagy agonist rapamycin attenuated macroscopic skin injury scores and skin fibrosis marker levels with decreased epidermal thickness and dermal collagen deposition in Atg7Flox/Flox Cre+ mice compared with the vehicle control. Moreover, in vitro experiment results were consistent with the in vivo results. Together with studies at the molecular level, we found that these changes involved the Akt/mTOR pathway. In addition, this phenomenon might also relate to Nrf2-autophagy signaling pathway under oxidative stress conditions. CONCLUSION: In conclusion, Atg7 and autophagy-related mechanisms confer radioprotection, and reactivation of the autophagy process can be a novel therapeutic strategy to reduce and prevent the occurrence of radiodermatitis, particularly skin fibrosis, in patients with cancer.


Assuntos
Dermatopatias , Pele , Humanos , Camundongos , Animais , Autofagia/genética , Fibrose , Transdução de Sinais , Epiderme , Camundongos Knockout , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/farmacologia
11.
Front Genet ; 14: 1127301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007958

RESUMO

RNA modification plays important role in the occurrence and development of hepatocellular carcinoma. The best characterized RNA modification is m6A, while other kinds of RNA modifications have not been fully investigated in hepatocellular carcinoma (HCC). In the current study, we investigated the roles of one hundred RNA modification regulators belonging to eight different types of cancer-related RNA modifications in HCC. Expression analysis revealed that nearly 90% RNA regulators exhibited significantly higher expression in tumors than normal tissues. By consensus clustering, we identified two clusters with distinct biological characteristics, immune microenvironment, and prognostic pattern. An RNA modification score (RMScore) was constructed and stratified patients into high- and low-risk group, which showed significantly different prognosis. Moreover, a nomogram including clinicopathologic features and the RMScore could well predict the survival in HCC patients. This study indicated the important role of eight types of RNA modification in HCC and develop a RMScore, which will be a new method to forecast the prognosis of HCC patients.

12.
Clin Epigenetics ; 15(1): 72, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120564

RESUMO

BACKGROUND: Chromatin regulators (CRs) are critical epigenetic modifiers and have been reported to play critical roles during the progression of various tumors, but their role in lung adenocarcinoma (LUAD) has not been comprehensively studied. METHODS: Differential expression and univariate Cox regression analyses were conducted to identify the prognostic CRs. Consensus clustering was applied to classify the subtypes of LUAD based on prognostic CRs. LASSO-multivariate Cox regression method was used for construction of a prognostic signature and development of chromatin regulator-related gene index (CRGI). The capacity of CRGI to distinguish survival was evaluated via Kaplan-Meier method in multiple datasets. Relationship between CRGI and tumor microenvironment (TME) was evaluated. Additionally, clinical variables and CRGI were incorporated to create a nomogram. The role of the prognostic gene NPAS2 in LUAD was elucidated via clinical samples validation and a series of in vitro and in vivo experiments. RESULTS: Two subtypes of LUAD were classified based on 46 prognostic CRs via consensus clustering which had significantly different survival and TME. A prognostic signature consisting of six CRs (MOCS, PBK, CBX3, A1CF, NPAS2, and CTCFL) was developed and proved to be an effective survival predictor in multiple independent datasets. The prognostic signature was also demonstrated to be an indicator of TME and sensitivity to immunotherapy and chemotherapy. The nomogram was suggested to be a simple tool that can predict survival accurately. Clinical samples show that NPAS2 is highly expressed in LUAD tissues, and in vitro and in vivo experiments demonstrated that inhibition of NPAS2 impeded malignant progression of LUAD cells. CONCLUSIONS: Our study comprehensively unveiled the functions of CRs in LUAD, developed a classifier to predict survival and response to treatments, and suggested that NPAS2 promoted LUAD progression for the first time.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Cromatina/genética , Metilação de DNA , Adenocarcinoma de Pulmão/genética , Genes Reguladores , Neoplasias Pulmonares/genética , Microambiente Tumoral , Proteínas de Ligação a DNA , Proteínas do Tecido Nervoso , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas Cromossômicas não Histona
13.
Cancer Commun (Lond) ; 43(4): 435-454, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36855844

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) targeting programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) have shown a moderate response in colorectal cancer (CRC) with deficient mismatch repair (dMMR) functions and poor response in patients with proficient MMR (pMMR). pMMR tumors are generally immunogenically "cold", emphasizing combination strategies to turn the "cold" tumor "hot" to enhance the efficacy of ICIs. ATR inhibitors (ATRi) have been proven to cooperate with radiation to promote antitumor immunity, but it is unclear whether ATRi could facilitate the efficacy of IR and ICI combinations in CRCs. This study aimed to investigate the efficacy of combining ATRi, irradiation (IR), and anti-PD-L1 antibodies in CRC mouse models with different microsatellite statuses. METHODS: The efficacy of combining ATRi, IR, and anti-PD-L1 antibodies was evaluated in CRC tumors. The tumor microenvironment and transcriptome signatures were investigated under different treatment regimens. The mechanisms were explored via cell viability assay, flow cytometry, immunofluorescence, immunoblotting, co-immunoprecipitation, and real-time quantitative PCR in multiple murine and human CRC cell lines. RESULTS: Combining ATRi berzosertib and IR enhanced CD8+ T cell infiltration and enhanced the efficacy of anti-PD-L1 therapy in mouse CRC models with different microsatellite statuses. The mechanistic study demonstrated that IR + ATRi could activate both the canonical cGAS-STING-pTBK1/pIRF3 axis by increasing cytosolic double-stranded DNA levels and the non-canonical STING signaling by attenuating SHP1-mediated inhibition of the TRAF6-STING-p65 axis, via promoting SUMOylation of SHP1 at lysine 127. By boosting the STING signaling, IR + ATRi induced type I interferon-related gene expression and strong innate immune activation and reinvigorated the cold tumor microenvironment, thus facilitating immunotherapy. CONCLUSIONS: The combination of ATRi and IR could facilitate anti-PD-L1 therapy by promoting STING signaling in CRC models with different microsatellite statuses. The new combination strategy raised by our study is worth investigating in the management of CRC.


Assuntos
Neoplasias Colorretais , Humanos , Animais , Camundongos , Neoplasias Colorretais/genética , Pirazinas , Imunoterapia , Microambiente Tumoral , Proteínas Mutadas de Ataxia Telangiectasia
14.
J Gastrointest Oncol ; 14(6): 2354-2372, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38196539

RESUMO

Background: Methylation modification patterns play a crucial role in human cancer progression, especially in gastrointestinal cancers. We aimed to use methylation regulators to classify patients with gastric adenocarcinoma and build a model to predict prognosis, promoting the application of precision medicine. Methods: We obtained RNA sequencing data and clinical data from The Cancer Genome Atlas (TCGA) database (n=335) and Gene Expression Omnibus (GEO) database (n=865). Unsupervised consensus clustering was used to identify subtypes of gastric adenocarcinoma. We performed functional enrichment analysis, immune infiltration analysis, drug sensitivity analysis, and molecular feature analysis to determine the clinical application for different subtypes. The univariate Cox regression analysis and the LASSO regression analysis were subsequently used to identify prognosis-related methylation regulators and construct a risk model. Results: Through unsupervised consensus clustering, patients were divided into two subtypes (cluster A and cluster B) with different clinical outcomes. Cluster B included patients with a better prognosis outcome and who were more likely to respond to immunotherapy. We then successfully built a predictive model and found five methylation-related genes (CHAF1A, CPNE8, PHLDA3, SPARC, and EHF) potentially significant to the prognosis of patients. The 1-, 3-, and 5-year areas under the curve of the risk model were 0.712, 0.696, and 0.759, respectively. The risk score was an independent prognostic factor and had the highest concordance index among common clinical indicators. Meanwhile, the tumor microenvironment, sensitivity of chemotherapeutic drugs, molecular features, and oncogenic dedifferentiation differed significantly across the risk groups and subtypes. Conclusions: We classified patients with gastric adenocarcinoma based on methylation regulators, which has positive implications for first-line clinical treatment. The prognostic model could predict the prognosis of patients and help to promote the development of precision medicine.

15.
Transl Lung Cancer Res ; 11(11): 2243-2260, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36519025

RESUMO

Background: Molecular classification of lung adenocarcinoma (LUAD) based on transcriptomic features has been widely studied. The complementarity of data obtained from multilayer molecular biology could help the LUAD classification via combining multi-omics information. Methods: We successfully divided samples from the The Cancer Genome Atlas (TCGA) (n=437) into four subtypes (CS1, CS2, CS3 and CS4) by 10 comprehensive multi-omics clustering methods in the "movics" R package. Meanwhile, external validation sets from different sequencing technologies proved the robustness of the grouping model. The relationship between subtypes, prognosis, molecular features, tumor microenvironment and response to first-line therapy was further analyzed. Next we used univariate Cox regression analysis and Lasso regression analysis to explore the application of biomarkers in clinical prognosis and constructed a prognostic model. Results: CS1 showed the worst overall survival (OS) among all four clusters, possibly related to its poor immune infiltration, higher tumor mutation and worse chromosomal stability. Patients in different subtypes differed significantly in cancer stem cell characteristics, activation of cancer-related pathways, sensitivity to chemotherapy and immunotherapy. The prognostic model showed good predictive performance. The 1-, 2- and 3-year areas under the curve of risk score were 0.779, 0.742 and 0.678, respectively. Seven genes (DKK1, TSPAN7, ID1, DLGAP5, HHIPL2, CD40 and SEMA3C) used to build the model may be potential therapeutic targets for LUAD. Conclusions: Four LUAD subtypes with different molecular characteristics and clinical implications were identified successfully through bioinformatic analysis. Our results may contribute to precision medicine and inform the development of rational clinical strategies for targeted and immune therapies.

16.
Front Genet ; 13: 995736, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338984

RESUMO

Neuropilin-1 (NRP1) is a transmembrane protein involved in many physiological and pathological processes, and it functions as a co-receptor to facilitate the entry of SARS-CoV-2 into host cells. Therefore, it is critical to predict the susceptibility to SARS-CoV-2 and prognosis after infection among healthy people and cancer patients based on expression of NRP1. In the current study, we analyzed the conservation and isoform of NRP1 using public databases. NRP1 expression landscape in healthy people, COVID-19 patients, and cancer patients at both bulk and single-cell RNA-seq level was also depicted. We also analyzed the relationship between tissue-specific NRP1 expression and overall survival (OS), as well as tumor immune environment at a pan-cancer level, providing a comprehensive insight into the relationship between the vulnerability to SARS-CoV-2 infection and tumorigenesis. In conclusion, we identified NRP1 as a potential biomarker in predicting susceptibility to SARS-CoV-2 infection among healthy people and cancer patients.

17.
Front Pharmacol ; 13: 989575, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188536

RESUMO

Breast cancer (BC) is a kind of malignant cancer in women, and it has become the most diagnosed cancer worldwide since 2020. Histone methylation is a common biological epigenetic modification mediating varieties of physiological and pathological processes. Lysine-specific demethylase 1 (LSD1), a first identified histone demethylase, mediates the removal of methyl groups from histones H3K4me1/2 and H3K9me1/2 and plays a crucial role in varieties of cancer progression. It is also specifically amplified in breast cancer and contributes to BC tumorigenesis and drug resistance via both demethylase and non-demethylase manners. This review will provide insight into the overview structure of LSD1, summarize its action mechanisms in BC, describe the therapeutic potential of LSD1 inhibitors in BC, and prospect the current opportunities and challenges of targeting LSD1 for BC therapy.

18.
Front Immunol ; 13: 985781, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275701

RESUMO

Coronavirus disease 2019 (COVID-19) is a severe pandemic that has posed an unprecedented challenge to public health worldwide. Hepatocellular carcinoma (HCC) is a common digestive system malignancy, with high aggressiveness and poor prognosis. HCC patients may be vulnerable to COVID-19. Since the anti-inflammatory, immunomodulatory and antiviral effects of vitamin D, we aimed to investigate the possible therapeutic effects and underlying action mechanisms of vitamin D in COVID-19 and HCC in this study. By using a range of bioinformatics and network pharmacology analyses, we identified many COVID-19/HCC target genes and analyzed their prognostic significance in HCC patients. Further, a risk score model with good predictive performance was developed to evaluate the prognosis of HCC patients with COVID-19 based on these target genes. Moreover, we identified seven possible pharmacological targets of vitamin D against COVID-19/HCC, including HMOX1, MB, TLR4, ALB, TTR, ACTA1 and RBP4. And we revealed the biological functions, signaling pathways and TF-miRNA coregulatory network of vitamin D in COVID-19/HCC. The enrichment analysis revealed that vitamin D could help in treating COVID-19/HCC effects through regulation of immune response, epithelial structure maintenance, regulation of chemokine and cytokine production involved in immune response and anti-inflammatory action. Finally, the molecular docking analyses were performed and showed that vitamin D possessed effective binding activity in COVID-19. Overall, we revealed the possible molecular mechanisms and pharmacological targets of vitamin D for treating COVID-19/HCC for the first time. But these findings need to be further validated in actual HCC patients with COVID-19 and need further investigation to confirm.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , COVID-19/complicações , Vitamina D/uso terapêutico , Simulação de Acoplamento Molecular , Receptor 4 Toll-Like/metabolismo , Vitaminas/uso terapêutico , MicroRNAs/genética , Antivirais/uso terapêutico , Citocinas/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol
19.
World J Gastroenterol ; 28(27): 3503-3513, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-36158257

RESUMO

BACKGROUND: Noninvasive, practical, and convenient means of detection for the prediction of liver fibrosis and cirrhosis in China are greatly needed. AIM: To develop a precise noninvasive test to stage liver fibrosis and cirrhosis. METHODS: With liver biopsy as the gold standard, we established a new index, [alkaline phosphatase (U/L) + gamma-glutamyl transpeptidase (U/L)/platelet (109/L) (AGPR)], to predict liver fibrosis and cirrhosis. In addition, we compared the area under the receiver operating characteristic curve (AUROC) of AGPR, gamma-glutamyl transpeptidase to platelet ratio, aspartate transaminase to platelet ratio index, and FIB-4 and evaluated the accuracy of these routine laboratory indices in predicting liver fibrosis and cirrhosis. RESULTS: Correlation analysis revealed a significant positive correlation between AGPR and liver fibrosis stage (P < 0.001). In the training cohort, the AUROC of AGPR was 0.83 (95%CI: 0.78-0.87) for predicting fibrosis (≥ F2), 0.84 (95%CI: 0.79-0.88) for predicting extensive fibrosis (≥ F3), and 0.87 (95%CI: 0.83-0.91) for predicting cirrhosis (F4). In the validation cohort, the AUROCs of AGPR to predict ≥ F2, ≥ F3 and F4 were 0.83 (95%CI: 0.77-0.88), 0.83 (95%CI: 0.77-0.89), and 0.84 (95%CI: 0.78-0.89), respectively. CONCLUSION: The AGPR index should become a new, simple, accurate, and noninvasive marker to predict liver fibrosis and cirrhosis in chronic hepatitis B patients.


Assuntos
Hepatite B Crônica , Fosfatase Alcalina , Aspartato Aminotransferases , Biomarcadores , China/epidemiologia , Hepatite B Crônica/complicações , Hepatite B Crônica/diagnóstico , Hepatite B Crônica/patologia , Humanos , Cirrose Hepática/diagnóstico , Cirrose Hepática/patologia , Contagem de Plaquetas , Curva ROC , Estudos Retrospectivos , gama-Glutamiltransferase
20.
Front Genet ; 13: 937948, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36017503

RESUMO

Hepatocellular carcinoma (HCC) is a highly malignant and heterogeneous tumor with poor prognosis. Cancer driver genes (CDGs) play an important role in the carcinogenesis and progression of HCC. In this study, we comprehensively investigated the expression, mutation, and prognostic significance of 568 CDGs in HCC. A prognostic risk model was constructed based on seven CDGs (CDKN2C, HRAS, IRAK1, LOX, MYCN, NRAS, and PABPC1) and verified to be an independent prognostic factor in both TCGA and ICGC cohorts. The low-score group, which showed better prognosis, had a high proportion of CD8+ T cells and elevated expression of interferon-related signaling pathways. Additionally, we constructed a nomogram to extend the clinical applicability of the prognostic model, which exhibits excellent predictive accuracy for survival. Our study showed the important role of CDGs in HCC and provides a novel prognostic indicator for HCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA