Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(6): e2305947121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289952

RESUMO

Optic neuropathies, characterized by injury of retinal ganglion cell (RGC) axons of the optic nerve, cause incurable blindness worldwide. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) represent a promising "cell-free" therapy for regenerative medicine; however, the therapeutic effect on neural restoration fluctuates, and the underlying mechanism is poorly understood. Here, we illustrated that intraocular administration of MSC-sEVs promoted both RGC survival and axon regeneration in an optic nerve crush mouse model. Mechanistically, MSC-sEVs primarily targeted retinal mural cells to release high levels of colony-stimulating factor 3 (G-CSF) that recruited a neural restorative population of Ly6Clow monocytes/monocyte-derived macrophages (Mo/MΦ). Intravitreal administration of G-CSF, a clinically proven agent for treating neutropenia, or donor Ly6Clow Mo/MΦ markedly improved neurological outcomes in vivo. Together, our data define a unique mechanism of MSC-sEV-induced G-CSF-to-Ly6Clow Mo/MΦ signaling in repairing optic nerve injury and highlight local delivery of MSC-sEVs, G-CSF, and Ly6Clow Mo/MΦ as therapeutic paradigms for the treatment of optic neuropathies.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Traumatismos do Nervo Óptico , Camundongos , Animais , Axônios/metabolismo , Fator Estimulador de Colônias de Granulócitos/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Óptico/terapia , Traumatismos do Nervo Óptico/metabolismo , Células Ganglionares da Retina/fisiologia , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo
2.
Free Radic Biol Med ; 147: 271-281, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31881336

RESUMO

Age-related macular degeneration (AMD) is a leading cause of irreversible blindness worldwide. Oxidative stress (OS), inflammation and genetics are considered the key pathogenic factors contributing to AMD development. Recent evidence shows the pro-inflammatory interleukin 17 (IL17) signaling is activated in AMD patients and promotes disease pathogenesis. However, the interplay between OS and IL17 signaling, and the regulatory mechanism of IL17 pathway are largely unknown. OS-induced retinal pigment epithelial cell (RPE) damage causes both the initial pathogenesis of AMD and secondary degeneration of rods and cones. Healthy RPE is essential for ocular immune privilege, however, damaged RPE cells can activate inflammatory response. In the present study, we identified IL17RA, the principle receptor of IL17 signaling, is one of the most upregulated inflammatory genes in human RPE cells upon OS exposure. The prominent increase of IL17RA was also observed in RPE and retina of an AMD-like mouse model. Knockdown of IL17RA in RPE cells prevented OS-induced RPE cell apoptosis and reduced the inflammatory response in both RPE and macrophages. Furthermore, we found that transcription factor KLF4 directly activates IL17RA expression, therefore, promotes the production of IL1ß and IL8 in an IL17RA-dependent manner. In addition, the mRNA level of KLF4 isoform 2 was positively correlated with that of IL17RA in AMD patients. Together, our study demonstrates an unrevealed relationship between IL17RA and OS, and a new regulatory mechanism of IL17RA by KLF4 in RPE cells. These findings suggest that inhibition of IL17RA as a new potential therapeutic target for AMD through RPE protection and inflammatory suppression upon OS exposure.


Assuntos
Degeneração Macular , Epitélio Pigmentado da Retina , Células Epiteliais , Humanos , Fator 4 Semelhante a Kruppel , Degeneração Macular/genética , Estresse Oxidativo , Receptores de Interleucina-17/genética , Pigmentos da Retina
3.
Curr Mol Med ; 19(1): 48-53, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30854967

RESUMO

OBJECTIVE: It has been well established that sumoylation acts as an important regulatory mechanism that controls many different cellular processes. We and others have shown that sumoylation plays an indispensable role during mouse eye development. Whether sumoylation is implicated in ocular pathogenesis remains to be further studied. In the present study, we have examined the expression patterns of the de-sumoylation enzymes (SENPs) in the in vitro cataract models induced by glucose oxidase and UVA irradiation. METHODS: Four-week-old C57BL/6J mice were used in our experiments. Lenses were carefully dissected out from mouse eyes and cultured in M199 medium for 12 hours. Transparent lenses (without surgical damage) were selected for experimentation. The lenses were exposed to UVA for 60 min or treated with 20 mU/mL glucose oxidase (GO) to induce cataract formation. The mRNA levels were analyzed with qRT-PCR. The protein levels were determined with western blot analysis and quantitated with Image J. RESULTS: GO treatment and UVA irradiation can induce cataract formation in lens cultured in vitro. GO treatment significantly down-regulated the mRNA levels for SENPs from 50% to 85%; on the other hand, expression of seven SENP proteins under GO treatment appeared in 3 situations: upregulation for SENP1, 2 and 6; downregulation for SENP 5 and 8; and unchanged for SENP3 and 7. UVA irradiation upregulates the mRNAs for all seven SENPs; In contrast to the mRNA levels for 7 SENPs, the expression levels for 6 SENPs (SENP1-3, 5-6 and 8) appeared down-regulated from 10% to 50%, and only SENP7 was slightly upregulated. CONCLUSION: Our results for the first time established the differentiation expression patterns of 7 de-sumoylation enzymes (SENPs) under treatment by GO or UVA, which provide preliminary data to link sumoylation to stress-induced cataractogenesis.


Assuntos
Catarata/genética , Olho/metabolismo , Sumoilação/genética , Animais , Catarata/induzido quimicamente , Catarata/patologia , Cisteína Endopeptidases/genética , Endopeptidases/genética , Olho/crescimento & desenvolvimento , Olho/patologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Glucose Oxidase/toxicidade , Humanos , Cristalino/efeitos dos fármacos , Cristalino/crescimento & desenvolvimento , Cristalino/metabolismo , Cristalino/efeitos da radiação , Camundongos , RNA Mensageiro/genética , Raios Ultravioleta/efeitos adversos
4.
Proc Natl Acad Sci U S A ; 115(17): E3987-E3995, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29622681

RESUMO

Oxidative stress (OS)-induced retinal pigment epithelium (RPE) cell apoptosis is critically implicated in the pathogenesis of age-related macular degeneration (AMD), a leading cause of blindness in the elderly. Heterochromatin, a compact and transcriptional inert chromatin structure, has been recently shown to be dynamically regulated in response to stress stimuli. The functional mechanism of heterochromatin on OS exposure is unclear, however. Here we show that OS increases heterochromatin formation both in vivo and in vitro, which is essential for protecting RPE cells from oxidative damage. Mechanistically, OS-induced heterochromatin selectively accumulates at p53-regulated proapoptotic target promoters and inhibits their transcription. Furthermore, OS-induced desumoylation of p53 promotes p53-heterochromatin interaction and regulates p53 promoter selection, resulting in the locus-specific recruitment of heterochromatin and transcription repression. Together, our findings demonstrate a protective function of OS-induced heterochromatin formation in which p53 desumoylation-guided promoter selection and subsequent heterochromatin recruitment play a critical role. We propose that targeting heterochromatin provides a plausible therapeutic strategy for the treatment of AMD.


Assuntos
Apoptose , Inativação Gênica , Heterocromatina/metabolismo , Estresse Oxidativo , Epitélio Pigmentado da Retina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Heterocromatina/genética , Heterocromatina/patologia , Camundongos , Camundongos Knockout , Epitélio Pigmentado da Retina/patologia , Sumoilação , Proteína Supressora de Tumor p53/genética
5.
Curr Mol Med ; 18(8): 550-555, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30636606

RESUMO

PURPOSE: Protein sumoylation is a highly dynamic and reversible post-translational modification, involving covalently conjugation of the small ubiquitin-like modifier (SUMO) to the lysine residue of the target protein. Similar to ubiquitination, sumoylation is catalyzed by E1, E2 and several E3 ligases. However, sumoylation usually does not cause protein degradation but alter the target function through diverse mechanisms. Increasing evidences have shown that sumoylation plays pivotal roles in the pathogenesis of human diseases, including neuron degeneration, cancer and heart disease, etc. We and others have shown that sumoylation is critically implicated in mouse eye development. However, the expression of sumoylation machinery has not been characterized in normal and pathogenic retina. Worldwide, age-related macular degeneration (AMD) is the leading cause of irreversible blindness in aged person. In the present study, we investigated the expression of the major sumoylation enzymes in normal mice and sodium iodateinduced AMD mouse model. METHODS: Four-week-old C57BL/6J mice were used in our experiment. A sterile 1% NaIO3 solution was freshly prepared in PBS from solid NaIO3. Experimental mice were injected with 70 mg/kg NaIO3, and similar volumes of PBS as control. Eyes were enucleated and immersion in FAA fixation overnight and processed for eye cross-sections. After fixation, cross sections eyes were dehydrated, embedded in paraffin, and 6 mm transverse sections were cut using the rotary microtome. Then paraffin sections were stained with hematoxylin and eosin (H&E), and mouse retinal thickness was observed to assess the histopathologic changes. RESULTS: Significantly declined RNA levels of E1, E2 and E3 ligase PIAS1 in NaIO3-injected mouse RPE one day-post treatment. Consistently, the protein level of PIAS1 was also decreased at this time point. At the late stage of treatment (three days post-injection), significantly reduced expression of E1 enzyme SAE1/UBA2 was detected in NaIO3-injected mouse retinas. In the contrary, dramatically increased E3 ligase RanBP2 was found in the injected-retinas. CONCLUSION: Together, our results demonstrated for the first time the dynamic expression of sumoylation pathway enzymes during the progression of retina degeneration induced by oxidative stress. Dynamic expression of E1, E2 and E3 enzymes were found during the time course of RPE and retina degeneration, which revealed the potential regulatory roles of sumoylation in AMD pathogenesis.


Assuntos
Proteínas do Olho , Regulação Enzimológica da Expressão Gênica , Iodatos/toxicidade , Degeneração Macular , Retina , Enzimas de Conjugação de Ubiquitina , Animais , Modelos Animais de Doenças , Proteínas do Olho/biossíntese , Proteínas do Olho/imunologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/imunologia , Degeneração Macular/induzido quimicamente , Degeneração Macular/enzimologia , Degeneração Macular/imunologia , Degeneração Macular/patologia , Camundongos , Retina/enzimologia , Retina/imunologia , Retina/patologia , Enzimas de Conjugação de Ubiquitina/biossíntese , Enzimas de Conjugação de Ubiquitina/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA