Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4327, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773088

RESUMO

The antitumor efficacy of adoptively transferred T cells is limited by their poor persistence, in part due to exhaustion, but the underlying mechanisms and potential interventions remain underexplored. Here, we show that targeting histone demethylase LSD1 by chemical inhibitors reshapes the epigenome of in vitro activated and expanded CD8+ T cells, and potentiates their antitumor efficacy. Upon T cell receptor activation and IL-2 signaling, a timely and transient inhibition of LSD1 suffices to improve the memory phenotype of mouse CD8+ T cells, associated with a better ability to produce multiple cytokines, resist exhaustion, and persist in both antigen-dependent and -independent manners after adoptive transfer. Consequently, OT1 cells primed with LSD1 inhibitors demonstrate an enhanced antitumor effect in OVA-expressing solid tumor models implanted in female mice, both as a standalone treatment and in combination with PD-1 blockade. Moreover, priming with LSD1 inhibitors promotes polyfunctionality of human CD8+ T cells, and increases the persistence and antitumor efficacy of human CD19-CAR T cells in both leukemia and solid tumor models. Thus, pharmacological inhibition of LSD1 could be exploited to improve adoptive T cell therapy.


Assuntos
Linfócitos T CD8-Positivos , Histona Desmetilases , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Camundongos , Humanos , Feminino , Camundongos Endogâmicos C57BL , Imunoterapia Adotiva/métodos , Linhagem Celular Tumoral , Ativação Linfocitária/efeitos dos fármacos , Transferência Adotiva , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Interleucina-2/metabolismo , Antígenos CD19/metabolismo , Antígenos CD19/imunologia , Memória Imunológica/efeitos dos fármacos
2.
NPJ Precis Oncol ; 8(1): 25, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297019

RESUMO

Immune checkpoint inhibitors have transformed the treatment landscape of non-small cell lung cancer (NSCLC). However, accurately identifying patients who will benefit from immunotherapy remains a challenge. This study aimed to discover potential biomarkers for predicting immunotherapy response in NSCLC patients. Single-cell mass cytometry (CyTOF) was utilized to analyze immune cell subsets in peripheral blood mononuclear cells (PBMCs) obtained from NSCLC patients before and 12 weeks after single-agent immunotherapy. The CyTOF findings were subsequently validated using flow cytometry and multiplex immunohistochemistry/immunofluorescence in PBMCs and tumor tissues, respectively. RNA sequencing (RNA-seq) was performed to elucidate the underlying mechanisms. In the CyTOF cohort (n = 20), a high frequency of CD57+CD8+ T cells in PBMCs was associated with durable clinical benefit from immunotherapy in NSCLC patients (p = 0.034). This association was further confirmed in an independent cohort using flow cytometry (n = 27; p < 0.001), with a determined cutoff value of 12.85%. The cutoff value was subsequently validated in another independent cohort (AUC = 0.733). We also confirmed the CyTOF findings in pre-treatment formalin-fixed and paraffin-embedded tissues (n = 90; p < 0.001). RNA-seq analysis revealed 475 differentially expressed genes (DEGs) between CD57+CD8+ T cells and CD57-CD8+ T cells, with functional analysis identifying DEGs significantly enriched in immune-related signaling pathways. This study highlights CD57+CD8+ T cells as a promising biomarker for predicting immunotherapy success in NSCLC patients.

3.
Mol Cell ; 83(23): 4370-4385.e9, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38016475

RESUMO

Targeting epigenetic regulators to potentiate anti-PD-1 immunotherapy converges on the activation of type I interferon (IFN-I) response, mimicking cellular response to viral infection, but how its strength and duration are regulated to impact combination therapy efficacy remains largely unknown. Here, we show that mitochondrial CPT1A downregulation following viral infection restrains, while its induction by epigenetic perturbations sustains, a double-stranded RNA-activated IFN-I response. Mechanistically, CPT1A recruits the endoplasmic reticulum-localized ZDHHC4 to catalyze MAVS Cys79-palmitoylation, which promotes MAVS stabilization and activation by inhibiting K48- but facilitating K63-linked ubiquitination. Further elevation of CPT1A incrementally increases MAVS palmitoylation and amplifies the IFN-I response, which enhances control of viral infection and epigenetic perturbation-induced antitumor immunity. Moreover, CPT1A chemical inducers augment the therapeutic effect of combined epigenetic treatment with PD-1 blockade in refractory tumors. Our study identifies CPT1A as a stabilizer of MAVS activation, and its link to epigenetic perturbation can be exploited for cancer immunotherapy.


Assuntos
Interferon Tipo I , Viroses , Humanos , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Lipoilação , Epigênese Genética , Imunidade Inata
4.
J Cancer ; 13(9): 2893-2904, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35912007

RESUMO

Lung cancer is the leading cause of cancer death and immunotherapy had been approved be a useful approach for NSCLC therapy. However, only part of the patients responds to checkpoint inhibitors. The EZH2, as a histone modification regulator, is overexpressed in NSCLC and negatively regulates the interferon-stimulated genes. Here, we demonstrate that EZH2 inhibition increases the double-strand RNA (dsRNA) level and then triggers the IFN pathway stress which is dependent on the pattern recognition receptors (TLR3, MDA5). The antigen presentation genes and PDL1 were also upregulated by inhibition of EZH2. Furthermore, in the immunocompetent LLC tumor model, the inhibition of EZH2 causes tumor regression and enhances the CD8+T cell infiltration. The EZH2 depletion triggers significant responses of the LLC mouse model to anti-PD1 therapy. This study identifies that inhibition of EZH2 promotes the dsRNA interferon driven antitumor immunity and enhances the anti-PD1 antitumor efficacy in NSCLC. These data suggest that EZH2 inhibition combined with anti-PD1/PDL1 is a promising lung cancer treatment strategy.

5.
World J Clin Cases ; 8(22): 5795-5801, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33344576

RESUMO

BACKGROUND: Hemorrhagic fever with renal syndrome is caused by hantaviruses presenting with high fever, hemorrhage, and acute kidney injury. Microvascular injury and hemorrhage in mucus were often observed in patients with hantavirus infection. Infection with bacterial and virus related aortic aneurysm or dissection occurs sporadically. Here, we report a previously unreported case of hemorrhagic fever with concurrent aortic dissection. CASE SUMMARY: A 56-year-old man complained of high fever and generalized body ache, with decreased platelet counts of 10 × 109/L and acute kidney injury. The enzyme-linked immunosorbent assays test for immunoglobulin M and immunoglobulin G hantavirus-specific antibodies were both positive. During the convalescent period, he complained sudden onset acute chest pain radiating to the back, and the computed tomography angiography revealed an aortic dissection of the descending aorta extending to iliac artery. He was diagnosed with hemorrhagic fever with renal syndrome and Stanford B aortic dissection. The patient recovered completely after surgery with other support treatments. CONCLUSION: Hemorrhagic fever with renal syndrome complicated with aortic dissection is rare and a difficult clinical condition. Hantavirus infection not only causes microvascular damage presenting with hemorrhage but may be risk factor for acute macrovascular detriment. A causal relationship has yet to be confirmed.

6.
Cancer Biother Radiopharm ; 28(4): 320-6, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-25310348

RESUMO

Gypenosides (Gyps) are triterpenoid saponins contained in an extract from Gynostemma pentaphyllum Makino and reported to induce apoptosis in human hepatoma cells through Ca(2+)-implicated endoplasmic reticulum (ER) stress and mitochondria-dependent pathways. The mechanism underlying the Gyp-increased intracellular Ca(2+) concentration ([Ca(2+)]i) is unclear. Here, we examined Gyp-induced necrosis and apoptosis in human hepatoma HepG2 cells. Gyp-induced apoptotic cell death was accompanied by a sustained increase in [Ca(2+)]i level. Gyp-increased [Ca(2+)]i level was partly inhibited by removal of extracellular Ca(2+) by Ca(2+) chelator EGTA, store-operated Ca(2+) channel (SOC) inhibitor 2- aminoethoxydiphenyl borate (2-APB), and ER Ca(2+)-release-antagonist 3,4,5-trimethoxybenzoic acid 8-(diethylamino) octyl ester (TMB-8). The strongest inhibitory effect was observed with TMB-8. EGTA, 2-APB, and TMB-8 also protected against Gyp-induced apoptosis in HepG2 cells. The combination of 2-APB and TMB-8 almost completely abolished the Gyp-induced Ca(2+) response and apoptosis. In contrast, the sarco/endoplasmic-reticulum-Ca(2+)-ATPase (SERCA) inhibitor thapsigargin slightly elevated Gyp-induced [Ca(2+)]i increase and apoptosis in HepG2 cells. Exposure to 300 µg/mL Gyp for 24 hours upregulated protein levels of inositol 1,4,5-trisphosphate receptor and SOC and downregulated that of SERCA for at least 72 hours. Thus, Gyp-induced increase in [Ca(2+)]i level and consequent apoptosis in HepG2 cells may be mainly due to enhanced Ca(2+) release from ER stores and increased store-operated Ca(2+) entry.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Compostos de Boro/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Sobrevivência Celular , Quelantes/farmacologia , Regulação para Baixo/efeitos dos fármacos , Ácido Egtázico/farmacologia , Inibidores Enzimáticos/farmacologia , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacologia , Gynostemma , Células Hep G2 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Necrose/induzido quimicamente , Extratos Vegetais/farmacologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Tapsigargina/farmacologia , Regulação para Cima/efeitos dos fármacos
7.
J Exp Clin Cancer Res ; 31: 8, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22293781

RESUMO

BACKGROUND: The management of patients with glioblastoma multiforme is difficult. Poor results have led to a search for novel therapeutic approaches. Gene therapy that could be both anti-invasive and antiangiogenic would be ideal. In this study, we constructed the recombinant adenoviral vector Ad-CALR/MAGE-A3 and evaluated its antitumor effects on glioblastoma in vitro and in vivo. METHODS: In this study, CALR and MAGE-A3 genes were delivered to the glioblastoma cell line U87, using adenovirus (Ad-CALR/MAGE-A3). U87 glioblastoma cells were transfected with Ad-green fluorescent protein to identify the multiplicity of infection. The expressions of CALR and MAGE-A3 were detected by PCR and Western blot. Cell proliferation was measured by MTT assay. Cell apoptosis was assessed by Annexin-V FITC/PI double staining flow cytometry. The invasive potential of U87 cells was determined by Matrigel invasion assay. Tube formation assay was used to detect the effects on angiogenesis of human umbilical vein endothelial cells. Protein expressions of PI3K/AKT, Erk1/2 and MMP-2/-9 in transfected cells were detected by Western blot. In vivo, the effects of Ad-CALR/MAGE-A3 on tumor growth and angiogenesis of U87 glioblastoma xenografts in nude mice were investigated. RESULTS: The expressions of CALR and MAGE-A3 in U87 cells resulted in the suppression of cell proliferation and invasion properties, and induced cell apoptosis. The Erk MAPK, PI3K/AKT pathways and expressions of MMP-2/-9 were inhibited in Ad-CALR/MAGE-A3-transfected cells. Outcomes of the tube formation assay confirmed the antiangiogenic effect of CALR. Moreover, in the in vivo model of glioblastoma, intratumoral injection of Ad-CALR/MAGE-A3 suppressed tumor growth and angiogenesis. CONCLUSION: Although Ad-CALR/MAGE-A3 and Ad-CALR demonstrated antiangiogenic effects on U87 cells, the repression of invasion was significant only in Ad-CALR/MAGE-A3-treated cells. To our knowledge, this is the first description of a role for combined CALR and MAGE-A3 in the anti-invasion and antiangiogenesis of U87.


Assuntos
Adenoviridae/genética , Antígenos de Neoplasias/genética , Calreticulina/genética , Vetores Genéticos , Glioblastoma/terapia , Proteínas de Neoplasias/genética , Neovascularização Patológica , Animais , Apoptose/genética , Linhagem Celular , Proliferação de Células , Feminino , Expressão Gênica , Técnicas de Transferência de Genes , Terapia Genética , Glioblastoma/genética , Glioblastoma/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica/genética , Neovascularização Patológica/genética , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA