Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 25(3): 675-688, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36527381

RESUMO

Microbial ammonia oxidation is vital to the nitrogen cycle. A biological process, called Dirammox (direct ammonia oxidation, NH3 →NH2 OH→N2 ), has been recently identified in Alcaligenes ammonioxydans and Alcaligenes faecalis. However, its transcriptional regulatory mechanism has not yet been fully elucidated. The present study characterized a new MocR-like transcription factor DnfR that is involved in the Dirammox process in A. faecalis strain JQ135. The entire dnf cluster was composed of 10 genes and transcribed as five transcriptional units, that is, dnfIH, dnfR, dnfG, dnfABCDE and dnfF. DnfR activates the transcription of dnfIH, dnfG and dnfABCDE genes, and represses its own transcription. The intact 1506-bp dnfR gene was required for activation of Dirammox. Electrophoretic mobility shift assays and DNase I footprinting analyses showed that DnfR has one binding site in the dnfH-dnfR intergenic region and two binding sites in the dnfG-dnfA intergenic region. Three binding sites of DnfR shared a 6-bp repeated conserved sequence 5'-GGTCTG-N17 -GGTCTG-3' which was essential for the transcription of downstream target genes. Cysteine and glutamate act as possible effectors of DnfR to activate the transcription of transcriptional units of dnfG and dnfABCDE, respectively. This study provided new insights in the transcriptional regulation mechanism of Dirammox by DnfR in A. faecalis JQ135.


Assuntos
Alcaligenes faecalis , Alcaligenes faecalis/química , Alcaligenes faecalis/genética , Alcaligenes faecalis/metabolismo , Amônia/metabolismo , Sítios de Ligação , Fatores de Transcrição/genética , Transcrição Gênica , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
Appl Environ Microbiol ; 84(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29934333

RESUMO

The herbicide dicamba is initially demethylated to 3,6-dichlorosalicylate (3,6-DCSA) in Rhizorhabdus dicambivorans Ndbn-20 and is subsequently 5-hydroxylated to 3,6-dichlorogentisate (3,6-DCGA). In the present study, two glutathione-dependent 3,6-DCGA dehalogenases, DsmH1 and DsmH2, were identified in strain Ndbn-20. DsmH2 shared a low identity (only 31%) with the tetrachlorohydroquinone (TCHQ) dehalogenase PcpC from Sphingobium chlorophenolicum ATCC 39723, while DsmH1 shared a high identity (79%) with PcpC. In the phylogenetic tree of related glutathione S-transferases (GSTs), DsmH1 and DsmH2, together with PcpC and the 2,5-dichlorohydroquinone dehalogenase LinD, formed a separate clade. DsmH1 and DsmH2 were synthesized in Escherichia coli BL21 and purified as His-tagged enzymes. Both enzymes required glutathione (GSH) as a cofactor and could 6-dechlorinate 3,6-DCGA to 3-chlorogentisate in vitro DsmH2 had a significantly higher catalytic efficiency toward 3,6-DCGA than DsmH1. Transcription and disruption analysis revealed that DsmH2 but not DsmH1 was responsible for the 6-dechlorination of 3,6-DCGA in strain Ndbn-20 in vivo Furthermore, we propose a novel eta class of GSTs to accommodate the four bacterial dehalogenases PcpC, LinD, DsmH1, and DsmH2.IMPORTANCE Dicamba is an important herbicide, and its use and leakage into the environment have dramatically increased since the large-scale planting of genetically modified (GM) dicamba-resistant crops in 2015. However, the complete catabolic pathway of dicamba has remained unknown, which limits ecotoxicological studies of this herbicide. Our previous study revealed that 3,6-DCGA was an intermediate of dicamba degradation in strain Ndbn-20. In this study, we identified two glutathione-dependent 3,6-DCGA dehalogenases, DsmH1 and DsmH2, and demonstrated that DsmH2 is physiologically responsible for the 6-dechlorination of 3,6-DCGA in strain Ndbn-20. GSTs play an important role in the detoxification and degradation of a variety of endogenous and exogenous toxic compounds. On the basis of their sequence identities, phylogenetic status, and functions, the four bacterial GSH-dependent dehalogenases (PcpC, LinD, DsmH1, and DsmH2) were reclassified as a new eta class of GSTs. This study helps us to elucidate the microbial catabolism of dicamba and enhances our understanding of the diversity and functions of GSTs.


Assuntos
Biodegradação Ambiental , Dicamba/metabolismo , Herbicidas/metabolismo , Hidrolases/genética , Hidrolases/metabolismo , Sphingomonadaceae/enzimologia , Sphingomonadaceae/genética , Desmetilação , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Sphingomonadaceae/metabolismo
3.
Antonie Van Leeuwenhoek ; 111(11): 1977-1984, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29713912

RESUMO

Strain ZZ-8T, a Gram-negative, aerobic, non-spore-forming, non-motile, yellow-pigmented, rod-shaped bacterium, was isolated from metolachlor-contaminated soil in China. The taxonomic position was investigated using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain ZZ-8T is a member of the genus Flavobacterium and shows high sequence similarity to Flavobacterium humicola UCM-46T (97.2%) and Flavobacterium pedocola UCM-R36T (97.1%), and lower (< 97%) sequence similarity to other known Flavobacterium species. Chemotaxonomic analysis revealed that strain ZZ-8T possessed MK-6 as the major respiratory quinone; and iso-C15:0 (28.5%), summed feature 9 (iso-C17:1 w9c/C16:0 10-methyl, 22.9%), iso-C17:0 3-OH (17.0%), iso-C15:0 3-OH (8.9%), iso-C15:1 G (8.6%) and summed feature 3 (C16:1 w7c/C16:1 w6c, 5.7%) as the predominant fatty acids. The polar lipids of strain ZZ-8T were determined to be lipids, a glycolipid, aminolipids and phosphatidylethanolamine. Strain ZZ-8T showed low DNA-DNA relatedness with F. pedocola UCM-R36T (43.23 ± 4.1%) and F. humicola UCM-46T (29.17 ± 3.8%). The DNA G+C content was 43.3 mol%. Based on the phylogenetic and phenotypic characteristics, chemotaxonomic data and DNA-DNA hybridization, strain ZZ-8T is considered a novel species of the genus Flavobacterium, for which the name Flavobacterium zaozhuangense sp. nov. (type strain ZZ-8T = KCTC 62315 T = CCTCC AB 2017243T) is proposed.


Assuntos
Acetamidas/química , Flavobacterium/isolamento & purificação , Poluição Ambiental , Flavobacterium/genética , Flavobacterium/metabolismo , Glicolipídeos/metabolismo , Fosfatidiletanolaminas/metabolismo , RNA Ribossômico 16S/genética , Microbiologia do Solo
4.
Int J Syst Evol Microbiol ; 68(1): 211-216, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29134934

RESUMO

A bacterial strain designated YYJ7-1T was isolated from farmland soil in China and characterized using a polyphasic taxonomic approach. Cells of strain YYJ7-1T were Gram-staining-positive, aerobic or facultatively anaerobic, rod-shaped, motile and endospore-forming. Growth occurred at 18-42 °C (optimum at 35 °C), at pH 6.0-8.0 (optimum at pH 7.5) and with 0.0-4.0 % NaCl (optimum with 0.5 %). Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain belonged to the genus Paenibacillus and showed high levels of sequence similarity with respect to Paenibacillus provencensis 4401170T (98.6 %) and Paenibacillus urinalis 5402403T (98.4 %), while lower 16S rRNA gene sequence similarities were observed with all other type strains (97.0 %). However, strain YYJ7-1T showed low DNA-DNA relatedness with P. provencensis 4401170T 48.7±4.5 % (43.6±7.1 % in a reciprocal experiment), and P. urinalis 5402403T 38.9±5.7 % (35.6±6.8 %). The major cellular fatty acids (>10.0 %) of strain YYJ7-1T were anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0. The polar lipid profile consisted of phospholipids, diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major isoprenoid quinone was MK-7. The DNA G+C content was 39.4 mol%. Based on these results, it is concluded that strain YYJ7-1T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus shunpengii sp. nov. is proposed, with YYJ7-1T (=ACCC 19965T=KCTC 33849T) as the type strain.


Assuntos
Fazendas , Paenibacillus/classificação , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Paenibacillus/genética , Paenibacillus/isolamento & purificação , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
5.
Appl Environ Microbiol ; 83(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28283519

RESUMO

Sphingobium phenoxybenzoativorans SC_3 degrades and utilizes diphenyl ether (DE) or 2-carboxy-DE as its sole carbon and energy source. In this study, we report the degradation of DE and 2-carboxy-DE initiated by a novel ring cleavage angular dioxygenase (diphenyl ether dioxygenase [Dpe]) in the strain. Dpe functions at the angular carbon and its adjacent carbon (C-1a, C-2) of a benzene ring in DE (or the 2-carboxybenzene ring in 2-carboxy-DE) and cleaves the C-1a-C-2 bond (decarboxylation occurs simultaneously for 2-carboxy-DE), yielding 2,4-hexadienal phenyl ester, which is subsequently hydrolyzed to muconic acid semialdehyde and phenol. Dpe is a type IV Rieske non-heme iron oxygenase (RHO) and consists of three components: a hetero-oligomer oxygenase, a [2Fe-2S]-type ferredoxin, and a glutathione reductase (GR)-type reductase. Genetic analyses revealed that dpeA1A2 plays an essential role in the degradation and utilization of DE and 2-carboxy-DE in S. phenoxybenzoativorans SC_3. Enzymatic study showed that transformation of 1 molecule of DE needs two molecules of oxygen and two molecules of NADH, supporting the assumption that the cleavage of DE catalyzed by Dpe is a continuous two-step dioxygenation process: DE is dioxygenated at C-1a and C-2 to form a hemiacetal-like intermediate, which is further deoxygenated, resulting in the cleavage of the C-1a-C-2 bond to form one molecule of 2,4-hexadienal phenyl ester and two molecules of H2O. This study extends our knowledge of the mode and mechanism of ring cleavage of aromatic compounds.IMPORTANCE Benzene ring cleavage, catalyzed by dioxygenase, is the key and speed-limiting step in the aerobic degradation of aromatic compounds. As previously reported, in the ring cleavage of DEs, the benzene ring needs to be first dihydroxylated at a lateral position and subsequently dehydrogenated and opened through extradiol cleavage. This process requires three enzymes (two dioxygenases and one dehydrogenase). In this study, we identified a novel angular dioxygenase (Dpe) in S. phenoxybenzoativorans SC_3. Under Dpe-mediated catalysis, the benzene ring of DE is dioxygenated at the angular position (C-1a, C-2), resulting in the cleavage of the C-1a-C-2 bond to generate a novel product, 2,4-hexadienal phenyl ester. This process needs only one angular dioxygenase, Dpe. Thus, the ring cleavage catalyzed by Dpe represents a novel mechanism of benzene ring cleavage.


Assuntos
Alphaproteobacteria/metabolismo , Proteínas de Bactérias/metabolismo , Dioxigenases/metabolismo , Éteres Fenílicos/química , Éteres Fenílicos/metabolismo , Alphaproteobacteria/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Biodegradação Ambiental , Dioxigenases/química , Dioxigenases/genética , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA