Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Environ Pollut ; 331(Pt 2): 121891, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37236585

RESUMO

A clear understanding of the allocation of Cd to grains is essential to manage the level of Cd in cereal diets effectively. Yet, debate remains over whether and how the pre-anthesis pools contribute to grain Cd accumulation, resulting in uncertainty regarding the need to control plant Cd uptake during vegetative growth. To this end, rice seedlings were exposed to 111Cd labeled solution until tillering, transplanted to unlabeled soils, and grown under open-air conditions. The remobilization of Cd derived from pre-anthesis vegetative pools was studied through the fluxes of 111Cd-enriched label among organs during grain filling. The 111Cd label was continuously allocated to the grain after anthesis. The lower leaves remobilized the Cd label during the earlier stage of grain development, which was allocated almost equally to the grains and husks + rachis. During the final stage, the Cd label was strongly remobilized from the roots and, less importantly, the internodes, which was strongly allocated to the nodes and, to a less extent, the grains. The results show that the pre-anthesis vegetative pools are an important source of Cd in rice grains. The lower leaves, internodes, and roots are the source organs, whereas the husks + rachis and nodes are the sinks competing with the grain for the remobilized Cd. This study provides insight into understanding the ecophysiological mechanism of Cd remobilization and setting agronomic measures for lowering grain Cd levels.


Assuntos
Oryza , Poluentes do Solo , Grão Comestível/química , Cádmio/análise , Marcação por Isótopo , Folhas de Planta/química , Solo , Poluentes do Solo/análise
2.
Environ Pollut ; 327: 121608, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37044257

RESUMO

Microbial co-metabolism is crucial for the efficient biodegradation of polycyclic aromatic hydrocarbons (PAHs); however, their intrinsic mechanisms remain unclear. To explore the co-metabolic degradation of PAHs, root organic acids (ROAs) (phenolic ROAs: caffeic acid [CA] and ferulic acid [FA]; non-phenolic ROAs: oxalic acid [OA]) were exogenously added as co-metabolic substrates under high (HFe) and low (LFe) iron levels in this study. The results demonstrated that more than 90% of PAHs were eliminated from the rhizosphere of Phragmites australis. OA can promote the enrichment of unrelated degrading bacteria and non-specific dioxygenases. FA with a monohydroxy structure can activate hydroxylase; however, it relies on phytosiderophores released by plants (such as OA) to adapt to stress. Therefore, non-specific co-metabolism occurred in these units. The best performance for PAH removal was observed in the HFe-CA unit because: (a) HFe concentrations enriched the Fe-reducing and denitrifying bacteria and promoted the rate-limiting degradation for PAHs as the enzyme cofactor; (b) CA with a dihydroxyl structure enriched the related degrading bacteria, stimulated specific dioxygenase, and activated Fe to concentrate around the rhizosphere simultaneously to perform the specific co-metabolism. Understanding the co-metabolic degradation of PAHs will help improve the efficacy of rhizosphere-mediated remediation.


Assuntos
Dioxigenases , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Hidrocarbonetos Policíclicos Aromáticos/análise , Rizosfera , Ferro/metabolismo , Poaceae/metabolismo , Biodegradação Ambiental , Bactérias/metabolismo , Dioxigenases/metabolismo , Compostos Orgânicos/metabolismo , Ácidos , Poluentes do Solo/metabolismo , Microbiologia do Solo
3.
New Phytol ; 237(6): 2238-2254, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36513604

RESUMO

Submergence is an abiotic stress that limits agricultural production world-wide. Plants sense oxygen levels during submergence and postsubmergence reoxygenation and modulate their responses. Increasing evidence suggests that completely submerged plants are often exposed to low-light stress, owing to the depth and turbidity of the surrounding water; however, how light availability affects submergence tolerance remains largely unknown. Here, we showed that Arabidopsis thaliana MYB DOMAIN PROTEIN30 (MYB30) is an important transcription factor that integrates light signaling and postsubmergence stress responses. MYB DOMAIN PROTEIN30 protein abundance decreased upon submergence and accumulated during reoxygenation. Under submergence conditions, CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), a central regulator of light signaling, caused the ubiquitination and degradation of MYB30. In response to desubmergence, however, light-induced MYB30 interacted with MYC2, a master transcription factor involved in jasmonate signaling, and activated the expression of the VITAMIN C DEFECTIVE1 (VTC1) and GLUTATHIONE SYNTHETASE1 (GSH1) gene families to enhance antioxidant biosynthesis. Consistent with this, the myb30 knockout mutant showed increased sensitivity to submergence, which was partially rescued by overexpression of VTC1 or GSH1. Thus, our findings uncover the mechanism by which the COP1-MYB30 module integrates light signals with cellular oxidative homeostasis to coordinate plant responses to postsubmergence stress.


Assuntos
Arabidopsis , Estresse Fisiológico , Fatores de Transcrição , Antioxidantes/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Ascórbico , Regulação da Expressão Gênica de Plantas , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Fenômenos Fisiológicos Vegetais , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
J Hazard Mater ; 424(Pt A): 127269, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34607026

RESUMO

Phenolic root exudates (PREs) released from wetland plants are potentially effective for accelerating the biodegradation of alkylphenols, yet the inherent behavior is still unclear. In this study, two representative root exudates (REs), namely p-coumaric acid (PREs) and oxalic acid (non-PREs) were exogenously added as specific and non-specific co-metabolic substrates, respectively, to elucidate the quantification of each removal pathway and degradation mechanism of co-metabolism for alkylphenols (i.e. p-tert-butylphenol (PTBP)) from synthetic wastewater. The results showed that soil adsorption (31-37%), microbial degradation (27-37%), and plant uptake (16-41%) are the main removal pathways of PTBP by PREs in the Phragmites australis rhizosphere. Both REs enriched anaerobic functional community (anaerobic ammonium oxidation bacteria and denitrifying bacteria) and promoted the usage of PTBP as carbon source and/or electron donor. The activity of non-specific enzyme (polyphenol oxidase) was enhanced by RE which owning a significant positive correlation with bacterial abundance, whereas only PREs strengthened the activity of specific enzyme (monophenol oxidase) catalyzing the phenolic ring hydroxylation of PTBP followed by a dehydrogenation route. Moreover, exogenous PREs significantly improved the growth of degrading-related bacteria (Sphingomonas and Gemmatimonas), especially in unplanted soils with high activity of dioxygenase catalyzing the cleavage pathway of PTBP, instead of plant presence.


Assuntos
Rizosfera , Águas Residuárias , Biodegradação Ambiental , Exsudatos e Transudatos , Raízes de Plantas , Poaceae , Microbiologia do Solo
5.
Chemosphere ; 282: 131096, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34470158

RESUMO

The plant Phytolacca americana L. simultaneously hyperaccumulates manganese (Mn) and rare earth elements (REEs), but the underlying mechanisms are largely unknown. In this study, P. americana and the corresponding rhizosphere soil samples were collected from an ion-adsorption REE mine area in China, and the elemental composition and soil properties were analyzed in order to explore the relationship between metal accumulation and soil properties. The results show that P. americana accumulates high concentrations of REEs (up to 1040 mg kg-1), Mn (up to 10400 mg kg-1) and aluminum (Al) (up to 5960 mg kg-1) in leaves. The REE concentrations in leaves were positively correlated with those of Al, Fe and Zn, while light REE concentrations were negatively correlated with P concentrations (p < 0.05). The soil properties explained 81.7%, 72.9% and 67.1% of REEs, Mn and Al accumulated in P. americana, respectively. The variation of REE accumulation in P. americana was primarily explained by plant available P (24.4%), pH (12.9%), TOC (9.4%) and total P (7.7%). The accumulation of Mn was primarily explained by plant available REEs (42.9%) and available Al (13.1%) while Al in P. americana was primarily explained by soil pH (14.4%). This study suggests the potential by regulation of soil properties in improving the efficiency of phytoextraction for REEs by hyperaccumulators.


Assuntos
Metais Terras Raras , Phytolacca americana , Poluentes do Solo , Alumínio , Biodegradação Ambiental , Manganês , Raízes de Plantas , Solo
6.
Metallomics ; 13(4)2021 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-33765153

RESUMO

Hyperaccumulators have exceptional phloem translocation capability for heavy metals. This study aims at quantifying the mobility and accumulation of Ni and Co via the phloem in the model hyperaccumulator Noccaea caerulescens. "Phloem loading capability (PLC)," which is calculated by the "Metal content in phloem sap/Metal content in leaves," was introduced to evaluate the metal phloem mobility, while "Phloem mobility value (PMV)" was used for the normalization of PLC, which sets the PLC of Sr as PMV 0 and that of Rb as 100. The results showed that the PMVs of Ni and Co were 63 and 47, respectively. And the phloem mobility of Rb, Ni, Co, and Sr could be graded as highly mobile, mobile, intermediate, and immobile accordingly. The phloem stream can supply up to 19.1% and 16.0% of the total Ni and Co accumulated in the young leaves, respectively, while for Rb and Sr, the phloem contributes to 29% and 1.4% of the total Rb or Sr, indicating phloem contribution of certain metal is directly linked with its mobility. The results of this study raise the importance of phloem translocation on metal accumulation in shoots and provide insights on the metal cycling process in hyperaccumulators.


Assuntos
Brassicaceae/metabolismo , Cobalto/metabolismo , Níquel/metabolismo , Floema/metabolismo , Raízes de Plantas/metabolismo , Brassicaceae/crescimento & desenvolvimento , Cobalto/análise , Níquel/análise , Raízes de Plantas/crescimento & desenvolvimento
7.
J Hazard Mater ; 377: 321-329, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31173982

RESUMO

This study developed a cost-effective and eco-friendly method by coupling plant extracts (take green tea for example) and Fe(III) to reduce Cr(VI) and precipitate Cr(III). At acidic pH, 1.43 mM Fe(III) combined with 1.33 g/L green tea extracts could reduce 93% of Cr(VI) in 180 min, which was much larger than ˜50% by green tea extracts alone. Moreover, 52% of Cr(III) could automatically precipitate out as mixed Fe(III)-Cr(III) (oxy)-hydroxide solids. In the viewpoint of mechanism, polyphenols in green tea extracts were the reactive constituents and transformed Fe(III) to Fe(II), by which step the aqueous Fe(II) level was maintained to continuously reduce Cr(VI) to Cr(III), and thus accelerating Cr(VI) reduction. The generated Fe(III) partially participated in the reaction with polyphenols again and some Fe(III) formed precipitates with Cr(III). Overall, the electron transfers in the polyphenol-Fe-Cr cyclic reactions made Fe(III) used for multiple times, thus accelerated Cr(VI) reduction. The applicability of the combined process was further verified by removing 100% and 70% of Cr(VI) from electroplating wastewater and contaminated soil, respectively. As polyphenols can be derived from plant wastes and Fe(III) is naturally abundant, this study provides a promising method for in situ remediation of Cr(VI)-contaminated sites.

8.
Sci Total Environ ; 646: 696-703, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30059929

RESUMO

The pollution of natural waters and sediments with metals derived from acid mine drainage (AMD) is a global environmental problem. However, the processes governing the transportation and transformation of AMD metals such as Cd in mountainous areas are poorly understood. In this study, the Cd isotopic composition and Cd concentration of river water and sediments (16 sampling sites) from an AMD-affected river in southern China were determined. Cd concentration in river water declined from its source at a tailings dam (304 µg L-1) to a point 14 km downstream (0.32 µg L-1). Sediment Cd concentration ranged from 0.18 to 39.9 µg g-1, suggesting that anthropogenic Cd is derived primarily from the tailing dam and easily enters the solid phase of the river. Isotopic data showed that the dissolved Cd in rivers was characterized by δ114/110Cd values ranging from 0.21‰ to 1.03‰, with a mean of 0.48‰. The greatest Cd isotope difference was observed between the water and sediments in the LW dam (Δ114/110Cdriver-sediment = 1.61‰, site 1), likely due to a rapid weathering dissolution of the ore tailings. In the river's upper reach (sites 2-3), isotope difference between river and sediment (Δ114/110Cdriver-sediment) ranged from 1.0‰ to 0.91‰. This suggests that a host of secondary processes might have impacted Cd isotope fractionation, including adsorption, ternary complexation and/or (co)precipitation of Cd on secondary oxides and hydroxides. In the middle and lower reaches, an abruptly elevated δ114/110Cd value near farmland (site 10) suggests the existence of a second Cd source. Based on the chemical properties of water samples we can attribute this heavy isotope signature to agricultural fertilizer and drainage from agricultural fields. Our results suggest that Cd isotope is a tracer for identifying and tracking Cd sources and attenuation mechanisms (adsorption/(co)precipitation) in a complex mountain watershed.

9.
Environ Int ; 94: 161-169, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27258657

RESUMO

Emission of polycyclic aromatic hydrocarbons (PAHs) from e-waste recycling activities in China is known. However, little is known on the association between PAH exposure and oxidative damage to DNA and lipid content in people living near e-waste dismantling sites. In this study, ten hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and two biomarkers [8-hydroxy-2'-deoxyguanosine (8-OHdG) and malondialdehyde (MDA)] of oxidative stress were investigated in urine samples collected from people living in and around e-waste dismantling facilities, and in reference population from rural and urban areas in China. The urinary levels of ∑10OH-PAHs determined in e-waste recycling area (GM: 25.4µg/g Cre) were significantly higher (p<0.05) than those found in both rural (11.7µg/g Cre) and urban (10.9µg/g Cre) reference areas. The occupationally exposed e-waste workers (36.6µg/g Cre) showed significantly higher (p<0.01) urinary Σ10OH-PAHs concentrations than non-occupationally exposed people (23.2µg/g Cre) living in the e-waste recycling site. The differences in urinary Σ10OH-PAHs levels between smokers (23.4µg/g Cre) and non-smokers (24.7µg/g Cre) were not significant (p>0.05) in e-waste dismantling sites, while these differences were significant (p<0.05) in rural and urban reference areas; this indicated that smoking is not associated with elevated levels of PAH exposure in e-waste dismantling site. Furthermore, we found that urinary concentrations of Σ10OH-PAHs and individual OH-PAHs were significantly associated with elevated 8-OHdG, in samples collected from e-waste dismantling site; the levels of urinary 1-hydroxypyrene (1-PYR) (r=0.284, p<0.01) was significantly positively associated with MDA. Our results indicate that the exposure to PAHs at the e-waste dismantling site may have an effect on oxidative damage to DNA among selected participants, but this needs to be validated in large studies.


Assuntos
Resíduo Eletrônico , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/urina , Estresse Oxidativo , Hidrocarbonetos Policíclicos Aromáticos/urina , 8-Hidroxi-2'-Desoxiguanosina , Adulto , Biomarcadores/urina , China , Desoxiguanosina/análogos & derivados , Desoxiguanosina/urina , Feminino , Humanos , Masculino , Malondialdeído/urina , Pessoa de Meia-Idade , Reciclagem
10.
Environ Sci Technol ; 48(20): 11926-33, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25222693

RESUMO

Until now, there has been little data on the isotope fractionation of nickel (Ni) in higher plants and how this can be affected by plant Ni and zinc (Zn) homeostasis. A hydroponic cultivation was conducted to investigate the isotope fractionation of Ni and Zn during plant uptake and translocation processes. The nonaccumulator Thlaspi arvense, the Ni hyperaccumulator Alyssum murale and the Ni and Zn hyperaccumulator Noccaea caerulescens were grown in low (2 µM) and high (50 µM) Ni and Zn solutions. Results showed that plants were inclined to absorb light Ni isotopes, presumably due to the functioning of low-affinity transport systems across root cell membrane. The Ni isotope fractionation between plant and solution was greater in the hyperaccumulators grown in low Zn treatments (Δ(60)Ni(plant-solution) = -0.90 to -0.63‰) than that in the nonaccumulator T. arvense (Δ(60)Ni(plant-solution) = -0.21‰), thus indicating a greater permeability of the low-affinity transport system in hyperaccumulators. Light isotope enrichment of Zn was observed in most of the plants (Δ(66)Zn(plant-solution) = -0.23 to -0.10‰), but to a lesser extent than for Ni. The rapid uptake of Zn on the root surfaces caused concentration gradients, which induced ion diffusion in the rhizosphere and could result in light Zn isotope enrichment in the hyperaccumulator N. caerulescens. In high Zn treatment, Zn could compete with Ni during the uptake process, which reduced Ni concentration in plants and decreased the extent of Ni isotope fractionation (Δ(60)Ni(plant-solution) = -0.11 to -0.07‰), indicating that plants might take up Ni through a low-affinity transport system of Zn. We propose that isotope composition analysis for transition elements could become an empirical tool to study plant physiological processes.


Assuntos
Brassicaceae/metabolismo , Níquel/farmacocinética , Thlaspi/metabolismo , Isótopos de Zinco/farmacocinética , Transporte Biológico , Brassicaceae/efeitos dos fármacos , Isótopos/farmacocinética , Níquel/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Thlaspi/efeitos dos fármacos , Zinco/metabolismo , Zinco/farmacocinética , Isótopos de Zinco/metabolismo
11.
J Hazard Mater ; 186(2-3): 1425-30, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21211902

RESUMO

Potentilla griffithii Hook is a newly found hyperaccumulator plant capable of high tolerance and accumulation of Zn and Cd. We investigated the interactive effects between Cd and Zn on accumulation and vacuolar sequestration in P. griffithii. Stimulatory effect of growth was noted at 0.2 mM Cd and 1.25 and 2.5 mM Zn tested. Accumulation of Zn and Cd in roots, petioles and leaves were increased significantly with addition of these metals individually. However, the Zn supplement decreased root Cd accumulation but increased the concentration of Cd in petioles and leaves. The results from sub-cellular distribution showed that up to 94% and 70% of the total Zn and Cd in the leaves were present in the protoplasts, and more than 90% Cd and Zn in the protoplasts were localized in the vacuoles. Nearly, 88% and 85% of total Cd and Zn were extracted in the cell sap of the leaves suggesting that most of the Cd and Zn in the leaves were available in soluble form. The present results indicate that Zn supplement significantly enhanced the petiole accumulation of Cd and further vacuolar sequestration plays an important role in tolerance, detoxification and hyperaccumulation of these metals in P. griffithii.


Assuntos
Cádmio/análise , Cádmio/toxicidade , Folhas de Planta/metabolismo , Potentilla/metabolismo , Zinco/análise , Zinco/toxicidade , Biomassa , Microscopia Eletrônica de Transmissão , Folhas de Planta/citologia , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Protoplastos/metabolismo , Frações Subcelulares/metabolismo , Vacúolos/metabolismo
12.
J Plant Physiol ; 167(2): 81-7, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19683362

RESUMO

To better understand the photosynthesis under stress, the effect of cadmium on carbon assimilation and chloroplast ultrastructure of a newly found Zn/Cd hyperaccumulator Picris divaricata in China was investigated in solution culture. The shoot and root Cd concentrations increased with increase in Cd supply, reaching maxima of 1109 and 5604mgkg(-1) dry weight at 75microM Cd, respectively. As Cd supply to P. divaricata increased, the shoot and root dry weight, leaf water content (except 75microM Cd), concentrations of chlorophyll a and b, chlorophyll a/b ratio and the concentration of carotenoids were not depressed at high Cd. However, the stomatal conductance, transpiration rate, net photosynthetic rate and intercellular CO(2) concentration were significantly affected when the Cd concentration reached 10, 10, 25 and 75microM, respectively. Meanwhile, carbonic anhydrase (CA; EC 4.2.1.1) activity and Rubisco (EC 4.1.1.39) content reached maxima in the presence of 50 and 5microM Cd, respectively. In addition, CA activity correlated positively with shoot Cd in plants treated with Cd at a range of 0-50microM. Moreover, the activities of NADP(+)-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13), Rubisco and fructose-1, 6-bisphosphatase (EC 3.1.3.11) were not significantly suppressed by increased Cd supply. Although the mesophyll cell size was reduced, chloroplast ultrastructure remained intact at the highest Cd treatment. Our finding revealed that P. divaricata chloroplast and the enzymes of carbon assimilation tolerate high levels of Cd, demonstrating its potential in possible application in phytoremediation.


Assuntos
Asteraceae/efeitos dos fármacos , Asteraceae/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Cloroplastos/metabolismo , Proteínas de Plantas/metabolismo , Zinco/metabolismo , Asteraceae/enzimologia , Anidrases Carbônicas/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Cloroplastos/efeitos dos fármacos , Ativação Enzimática , Fotossíntese/efeitos dos fármacos , Ribulose-Bifosfato Carboxilase/metabolismo
13.
Huan Jing Ke Xue ; 30(10): 3060-6, 2009 Oct 15.
Artigo em Chinês | MEDLINE | ID: mdl-19968131

RESUMO

The adsorption behavior of exogenous thorium on soil was studied to evaluate the contaminated risk on soil. The adsorption capacity, equilibrium time, distribution coefficient and desorption ability were investigated by the experiments of static adsorption. The strong adsorption ability of exogenous thorium on soil samples was observed by high adsorption ratio (> 92%) and low desorption ratio (< 5%) in equilibrium, and the biggest distribution coefficient was over 10(4). The adsorption capacity and equilibrium time were related to soil properties. According to the results of adsorption, Freundlich equation (r > or = 0.9167) and Elovich equation (R2 > or = 0.8980) were primely fit for describing the thermodynamics and kinetics of the adsorption of exogenous thorium on soil samples, respectively, which indicated that the adsorption was belonged to the nonlinear adsorption, and was affected by the diffusion of thorium on soil surface and in mineral interbed. Sequential extraction procedure was employed to evaluate the bound fractions of exogenous thorium adsorbed on soil samples. Based on the extracted results of thorium fractions, exogenous thorium was presented in the labile nonresidual fractions (over 58%) at the low initial concentration (10(-7) - 10(-6) mol x L(-1)), and nonresidual fractions enhanced with the increase of the initial amount, meanwhile more exogenous throium was transferred to the stable residual fractions.


Assuntos
Resíduos Industriais/análise , Metais Terras Raras , Mineração , Poluentes do Solo/química , Tório/química , Adsorção , Solo/análise , Poluentes do Solo/metabolismo , Tório/metabolismo
14.
Chemosphere ; 74(1): 6-12, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18992910

RESUMO

A hydroponic experiment was carried out to study the effect of cadmium (Cd) on growth, Cd accumulation, lipid peroxidation, reactive oxygen species (ROS) content and antioxidative enzymes in leaves and roots of Arabis paniculata F., a new Cd hyperaccumuator found in China. The results showed that 22-89 microM Cd in solution enhanced the growth of A. paniculata after three weeks, with 21-27% biomass increase compared to the control. Cd concentrations in shoots and roots increased with increasing Cd supply levels, and reached a maximum of 1662 and 8670 mg kg(-1) Cd dry weight at 178 microM Cd treatment, respectively. In roots, 22-89 microM Cd reduced the content of malondialdehyde (MDA), superoxide (O(2)(-1)) and H(2)O(2) as well as the activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX) and glutathione reductase (GR). In leaves, the contents of MDA, O(2)(-1) and H(2)O(2) remained unaffected by 22-89 microM Cd, while 178 microM Cd treatment significantly increased the MDA content, 69.5% higher than that of the control; generally, the activities of SOD, catalase (CAT), GPX and APX showed an increasing pattern with increasing Cd supply levels. Our present work concluded that A. paniculata has a great capability of Cd tolerance and accumulation. Moderate Cd treatment (22-89 microM Cd) alleviated the oxidative stress in roots, while higher level of Cd addition (178 microM) could cause an increasing generation of ROS, which was effectively scavenged by the antioxidative system.


Assuntos
Arabis/efeitos dos fármacos , Arabis/metabolismo , Cádmio/toxicidade , Ascorbato Oxidase/metabolismo , Cádmio/metabolismo , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
15.
Huan Jing Ke Xue ; 29(7): 2028-36, 2008 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-18828396

RESUMO

Using the differential centrifugation technique and sequential chemical extraction method, effects of Cd, Pb and different Zn salts on subcellular distribution and chemical form of Zn in Zn hyperaccumulator Potentilla griffithii var. velutina under nutrient solution culture were analyzed. Under all treatments except for the control, 46%-74% and 16%-33% of total Zn in the plants are distributed in cell wall and in soluble fraction, respectively. Further, 74%-95% of total Zn are localized in these two parts under all treatments, which suggest that cell wall and soluble fraction in the plant are major storage sites for Zn. Compared with the control, Zn percentage significantly increases by 9%-38% in the cell wall and decreases by 6%-40% in the soluble fraction with addition of Zn, Cd and Pb treatment (p < 0.05). Although the addition of Cd and Pb has no influence on the pattern of Zn subcellular distribution presenting cell wall > soluble fraction > karyon and chloroplast > mitochondrion, it generally reduces Zn percentage in the chloroplast, karyon and mitochondrion and increases that in the cell wall or soluble fraction, suggesting that Cd and Pb promote the transferring processes of Zn from organelle to either cell wall or vacuole. As to the chemical forms, 61%-87% of total Zn exist as ethanol- and water-extractable forms in plants under control and only leaves under Zn addition treatment; while 62%-73% of total Zn exist as NaCl- and ethanol-extractable forms in leafstalks and roots under Zn addition treatment. NaCl-, ethanol- and water-extractable forms are also the main chemical forms in the plants, occupied almost 70%-89% of total Zn under Zn/Cd and Zn/Pb compound treatments. The addition of Zn, Cd and Pb generally increases the percentage of NaCl-extractable Zn forms, but decreases that of ethanol-extractable Zn, which facilitates Zn chemical form transferring from relatively higher active forms to less active ones. These results mentioned above indicate that cell wall binding, vacuolar compartmentalization and reduction of total percentage in higher active chemical forms are main tolerance mechanisms for Zn in Potentilla griffithii var. velutina in response to Zn, Zn/Cd and Zn/Pb treatments. Additionally, different Zinc salts have no obvious influence on Zn subcellular distribution in the plant, whereas the treatment of Zinc nitrate turns Zn ethanol-extraction to a dominant chemical form.


Assuntos
Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Chumbo/toxicidade , Potentilla/metabolismo , Zinco/metabolismo , Transporte Biológico/efeitos dos fármacos , Parede Celular/metabolismo , Cloroplastos/metabolismo , Mitocôndrias/metabolismo , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Zinco/química
16.
Huan Jing Ke Xue ; 29(2): 506-11, 2008 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-18613528

RESUMO

Hydroponic culture was conducted to study the effect of Cd on the growth, metal accumulation and nitrogen metabolism in Brassica chinensis. The enzymatic activities of nitrogen metabolism including nitrate reductase (NR), glutamine synthetase (GS) and GS-transferase as well as the concentrations of chlorophyll, free proline, soluble protein, NO3(-) -N, NH4+ -N and nutrients in Brassica chinensis were determined. Results indicated that the addition of Cd reduced the content of the soluble protein and the accumulation of Cu, Ca, Fe and Mg, but promoted the P uptake. Low level of Cd (1 mg x L(-1)) could significantly increase the biomass and the content of chlorophyll of Brassica chinensis and the activities of NR, GS and GS-transferase when compared to control plants. However, when the Cd levels were above 2.5 mg x L(-1) in the culture medium, the activities of these enzymes were inhibited. Accordingly, the contents of NO3(-) -N, NH4+ -N, free proline and the activity of protease in the leaf of Brassica chinensis increased significantly. These results suggested that Cd addition could interfere with the assimilation of N in Brassica chinensis. The increase of free proline might alleviate the toxicity of ammonium in Brassica chinensis.


Assuntos
Brassica/efeitos dos fármacos , Cádmio/farmacologia , Nitrogênio/metabolismo , Prolina/metabolismo , Brassica/crescimento & desenvolvimento , Brassica/metabolismo , Clorofila/metabolismo , Relação Dose-Resposta a Droga , Glutamato-Amônia Ligase/metabolismo , Nitrato Redutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA