Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Immunol Lett ; 259: 30-36, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37247788

RESUMO

BACKGROUND: Systemic lupus erythematosus (SLE) is one of the most common autoimmune diseases in China. At present, there are hundreds of autoantibodies in SLE patients; however, only a dozen of the autoantibodies can be routinely detected, and the available diagnostic antibodies are not sufficient for diagnosis or differential diagnosis of SLE patients with atypical clinical manifestations or other autoimmune diseases. Therefore, it is necessary to find new diagnostic markers to improve the diagnostic effect of SLE. METHODS: The displayed random peptide library and peptide microarray were combined to identify SLE-related epitope peptides. A case-control design was used. The IgG antibodies in the sera from SLE patients, healthy controls, and other autoimmune disease controls underwent a reaction with the phage-display random peptide library, respectively. Selected epitope peptides were used to construct a peptide chip. A total of 644 serum samples (including 296 SLE patients, 168 disease controls, and 180 healthy controls) were used for further screening and verification. Peptides with an area under the curve (AUC) > 0.650 were further verified by ELISA. Finally, 500 serum samples (including 200 SLE patients, 150 disease controls, and 150 healthy controls) were used to verify and evaluate the diagnostic and differential diagnostic efficacy of the selected peptides. RESULTS: After the previous screening, five epitope peptides (SLE_P19, SLE_P20, SLE_P27, SLE_P28, and SLE_P29) may have potential as SLE diagnostic markers. Additionally, SLE_P27 was superior to the other four peptides in the diagnosis and differential diagnosis of SLE and rheumatoid arthritis (RA). The AUC of SLE_P27 was 0.938, the sensitivity was 76.00%, the specificity was 92.70%, the positive likelihood ratio was 10.411, the negative likelihood ratio was 0.259, and the accuracy was 84.40%. The diagnostic efficacy of SLE can be increased by combining the five selected peptides with the anti-double stranded DNA antibody (anti-dsDNA) and anti-Smith antibodies (anti-Sm). CONCLUSIONS: In this study, we identified five peptides that may serve as potential biomarkers for SLE diagnosis using the strategy of combining the displayed random peptide library with the peptide microarray. The combination of selected peptides and existing autoantibodies can significantly improve the diagnostic efficiency. These specific peptides are expected to be new diagnostic markers for SLE.


Assuntos
Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Humanos , Epitopos , Biblioteca de Peptídeos , Peptídeos , Autoanticorpos
2.
FASEB J ; 35(5): e21535, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33817835

RESUMO

Thymic epithelial cells (TECs) are indispensable for T cell development, T cell receptor (TCR) repertoire selection, and specific lineage differentiation. Medullary thymic epithelial cells (mTECs), which account for the majority of TECs in adults, are critical for thymocyte selection and self-tolerance. CD74 is a nonpolymorphic transmembrane glycoprotein of major histocompatibility complex class II (MHCII) that is expressed in TECs. However, the exact role of CD74 in regulating the development of mTEC is poorly defined. In this research, we found that loss of CD74 resulted in a significant diminution in the medulla, a selective reduction in the cell number of mature mTECs expressing CD80 molecules, which eventually led to impaired thymic CD4+ T cell development. Moreover, RNA-sequence analysis showed that CD74 deficiency obviously downregulated the canonical nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway in mTECs. Our results suggest that CD74 positively controls mTEC cellularity and maturation partially by activating the canonical NF-κB signaling pathway.


Assuntos
Antígenos de Diferenciação de Linfócitos B/fisiologia , Diferenciação Celular , Células Epiteliais/patologia , Regulação da Expressão Gênica , Antígenos de Histocompatibilidade Classe II/fisiologia , Ativação Linfocitária/imunologia , NF-kappa B/metabolismo , Timo/patologia , Animais , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/genética , Transdução de Sinais , Timo/imunologia , Timo/metabolismo
3.
J Biol Chem ; 294(37): 13740-13754, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31346035

RESUMO

Seminal amyloid fibrils are made up of naturally occurring peptide fragments and are key targets for the development of combination microbicides or antiviral drugs. Previously, we reported that the polysulfonic compound ADS-J1 is a potential candidate microbicide that not only inhibits HIV-1 entry, but also seminal fibrils. However, the carcinogenic azo moieties in ADS-J1 preclude its clinical application. Here, we screened several ADS-J1-like analogs and found that the antiparasitic drug suramin most potently inhibited seminal amyloid fibrils. Using various biochemical methods, including Congo red staining, CD analysis, transmission EM, viral infection assays, surface plasmon resonance imaging, and molecular dynamics simulations, we investigated suramin's inhibitory effects and its putative mechanism of action. We found that by forming a multivalent interaction, suramin binds to proteolytic peptides and mature fibrils, thereby inhibiting seminal fibril formation and blocking fibril-mediated enhancement of viral infection. Of note, suramin exhibited potent anti-HIV activities, and combining suramin with several antiretroviral drugs produced synergistic effects against HIV-1 in semen. Suramin also displayed a good safety profile for vaginal application. Moreover, suramin inhibited the semen-derived enhancer of viral infection (SEVI)/semen-mediated enhancement of HIV-1 transcytosis through genital epithelial cells and the subsequent infection of target cells. Collectively, suramin has great potential for further development as a combination microbicide to reduce the spread of the AIDS pandemic by targeting both viral and host factors involved in HIV-1 sexual transmission.


Assuntos
Amiloide/efeitos dos fármacos , Sêmen/efeitos dos fármacos , Suramina/farmacologia , Adulto , Animais , Fármacos Anti-HIV/farmacologia , Antirretrovirais/farmacologia , Infecções por HIV/metabolismo , HIV-1/metabolismo , Voluntários Saudáveis , Humanos , Masculino , Fragmentos de Peptídeos/metabolismo , Peptídeos/metabolismo , Coelhos , Sêmen/metabolismo , Suramina/metabolismo
4.
EBioMedicine ; 45: 58-69, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31202814

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) have been identified as regulators of a number of developmental and tumorigenic processes. However, the functions of most lncRNAs in glioma remain unknown and the mechanisms governing the proliferation of tumor cells remain poorly defined. METHODS: Both in vitro and in vivo assays were performed to investigate the roles of lncRNAs in the pathophysiology of gliomas. lncRNA arrays were used to identify differentially expressed lncRNAs. Subcutaneous tumor formation and a brain orthotopic tumor model in nude mice were used to investigate the functions of lncRNAs in vivo. The in vitro functions of lncRNAs were analyzed by fluorescence-activated cell sorting, colony formation, and western blot analyses. RNA fluorescence in situ hybridization and immunoprecipitation were used to explore the underlying mechanisms. FINDINGS: Here, we describe the newly discovered noncoding RNA RP11-732M18.3, which is highly overexpressed in glioma cells and interacts with 14-3-3ß/α to promote glioma growth, acting as an oncogene. Overexpression of lncRNA RP11-732 M18.3 was associated with the proliferation of glioma cells and tumor growth in vitro and in vivo. Remarkably, lncRNA RP11-732M18.3 promoted cell proliferation and G1/S cell cycle transition. lncRNA RP11-732M18.3 is predominately localized in the cytoplasm. Mechanistically, the interaction of lncRNA RP11-732M18.3 with 14-3-3ß/α increases the degradation of the p21 protein. lncRNA RP11-732M18.3 promoted the recruitment of ubiquitin-conjugating enzyme E2 E1 to 14-3-3ß/α and the binding of 14-3-3ß/α with ubiquitin-conjugating enzyme E2 E1 (UBE2E1) promoted the degradation of p21. INTERPRETATION: Overall these data demonstrated that lncRNA RP11-732M18.3 regulates glioma growth through a newly described lncRNA-protein interaction mechanism. The inhibition of lncRNA RP11-732M18.3 could provide a novel therapeutic target for glioma treatment.


Assuntos
Proteínas 14-3-3/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Glioma/tratamento farmacológico , RNA Longo não Codificante/genética , Animais , Apoptose/genética , Carcinogênese/genética , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , Xenoenxertos , Humanos , Hibridização in Situ Fluorescente , Camundongos , Terapia de Alvo Molecular , Ligação Proteica/genética , Proteólise , Enzimas de Conjugação de Ubiquitina/genética
5.
Front Immunol ; 10: 3099, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32082299

RESUMO

The thymus is the primary lymphoid organ responsible for the generation and maturation of T cells. Thymic epithelial cells (TECs) account for the majority of thymic stromal components. They are further divided into cortical and medullary TECs based on their localization within the thymus and are involved in positive and negative selection, respectively. Establishment of self-tolerance in the thymus depends on promiscuous gene expression (pGE) of tissue-restricted antigens (TRAs) by TECs. Such pGE is co-controlled by the autoimmune regulator (Aire) and forebrain embryonic zinc fingerlike protein 2 (Fezf2). Over the past two decades, research has found that TECs contribute greatly to thymopoiesis and T cell development. In turn, signals from T cells regulate the differentiation and maturation of TECs. Several signaling pathways essential for the development and maturation of TECs have been discovered. New technology and animal models have provided important observations on TEC differentiation, development, and thymopoiesis. In this review, we will discuss recent advances in classification, development, and maintenance of TECs and mechanisms that control TEC functions during thymic involution and central tolerance.


Assuntos
Diferenciação Celular , Células Epiteliais/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Timócitos/citologia , Timócitos/metabolismo , Timo/citologia , Timo/fisiologia , Animais , Biomarcadores , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Células Epiteliais/citologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Imunofenotipagem , Linfopoese , NF-kappa B/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
6.
Int J Oncol ; 53(3): 973-986, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30015880

RESUMO

Glioma is the most prevalent and fatal primary tumor of the central nervous system in adults, while the development of effective therapeutic strategies in clinical practice remain a challenge. Nucleotide-binding domain leucine-rich family pyrin-containing 3 (NLRP3) has been reported to be associated with tumorigenesis and progression; however, its expression and function in human glioma remain unclear. The present study was designed to explore the biological role and potential mechanism of NLRP3 in human glioma. The results demonstrated that overexpression of NLRP3, apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC), caspase­1 and interleukin (IL)­1ß protein in human glioma tissues were significantly correlated with higher World Health Organization grades. The in vitro biological experiments demonstrated that NLRP3 downregulation significantly inhibited the proliferation, migration and invasion, and promoted the apoptosis of SHG44 and A172 glioma cell lines. Furthermore, western blot assays revealed that the downregulation of NLRP3 significantly reduced the expression of ASC, caspase­1 and IL­1ß protein. Furthermore, NLRP3 knockdown caused the inhibition of epithelial-mesenchymal transition (EMT), and inhibited the phosphorylation of AKT serine/threonine kinase (AKT) and phosphorylation of phosphatase and tensin homolog (PTEN). Consistently, the upregulation of NLRP3 significantly increased the expression of ASC, caspase­1, IL­1ß and phosphorylated-PTEN, promoted proliferation, migration, invasion and EMT, inhibited apoptosis, and activated the AKT signaling pathway. The data of the present study indicate that NLRP3 affects human glioma progression and metastasis through multiple pathways, including EMT and PTEN/AKT signaling pathway regulation, enhanced inflammasome activation, and undefined inflammasome-independent mechanisms. Understanding the biological effects of NLRP3 in human glioma and the underlying mechanisms may offer novel insights for the development of glioma clinical therapeutic strategies.


Assuntos
Neoplasias do Sistema Nervoso Central/patologia , Transição Epitelial-Mesenquimal/genética , Glioma/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais/genética , Adolescente , Adulto , Idoso , Apoptose/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Criança , Progressão da Doença , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Masculino , Pessoa de Meia-Idade , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Gradação de Tumores , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/metabolismo , Regulação para Cima , Adulto Jovem
7.
J Cell Mol Med ; 22(1): 497-510, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28922548

RESUMO

Current glioma therapies allow in situ delivery of cytotoxic drugs to the tumour; however, gliomas show early recurrence due to their highly proliferative character. Long non-coding (lnc)RNAs play critical roles in tumorigenesis by controlling cell proliferation and cycling. However, the mechanism of action of lncRNAs in glioma development remains unclear. Here, we report that the lncRNA PLAC2 induces cell cycle arrest by targeting ribosomal protein (RP)L36 in glioma. RPL36 promoted cell proliferation and G1/S cell cycle progression. Mass spectrometry analysis revealed that signal transducer and activator of transcription (STAT)1 interacted with both lncRNA PLAC2 and the RPL36 promoter. We also found that the nucleus PLAC2 bind with STAT1 and interact with RPL36 promoters but the cytoplasmic lncRNA PLAC2 inhibited STAT1 nuclear transfer, thereby decreasing RP36 expression, inhibiting cell proliferation and inducing cell cycle arrest. These results provide evidence for a novel cell cycle regulatory network in glioma comprising the lncRNA PLAC2 along with STAT1 and RPL36 that can serve as a therapeutic target for glioma treatment.


Assuntos
Ciclo Celular/genética , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , RNA Longo não Codificante/genética , Proteínas Ribossômicas/genética , Fator de Transcrição STAT1/metabolismo , Adulto , Animais , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Fase G1/genética , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , RNA Longo não Codificante/metabolismo , Proteínas Ribossômicas/metabolismo , Fase S/genética
8.
Mol Med Rep ; 17(2): 3062-3068, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29207171

RESUMO

Ginsenoside Rh2 (G­Rh2), the main bioactive component in American ginseng, is known to exert a wide variety of biological activities. Accumulating evidence suggests that G­Rh2 inhibits cell proliferation and induces apoptosis of tumor cells. However, the possible mechanism through which G­Rh2 exerts its action on malignant glioma cells have not been completely elucidated. The findings of the present study demonstrated that G­Rh2 decreased the viability of glioma cells in a dose­ and time­dependent manner, and induced cell cycle arrest. G­Rh2­induced cell cycle arrest was accompanied by the downregulation of cyclin­dependent kinase 4 and Cyclin E. In addition, G­Rh2 markedly reduced the expression of total­ RAC­α serine/threonine­protein kinase (Akt) and the levels of phosphorylated­Akt. These findings provide mechanistic details of how G­Rh2 acts on glioma cells and suggest that G­Rh2 may function as a potential anti­cancer drug for glioma treatment.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Ginsenosídeos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclina D/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Humanos , Fosforilação
9.
Mol Med Rep ; 14(6): 5288-5296, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27779670

RESUMO

Early reports suggest that nuclear factor IA (NFIA) is important in the pathogenesis of glioma. Our previous study demonstrated that the long non­coding RNA (lncRNA), RP5­833A20.1, suppressed the expression of NFIA in THP­1 macrophage-derived foam cells. However, the effect and possible mechanism of RP5­833A20.1 on glioma remains to be fully elucidated, and whether the NFIA-dependent pathway is involved in its progression has not been investigated. In the present study, the mechanisms by which RP5­833A20.1 regulates the expression of NFIA in glioma were investigated. The expression levels of RP5­833A20.1 and NFIA were determined in U251 cells and clinical samples using reverse transcription­quantitative polymerase chain reaction (PCR) analysis. The effects of RP5­833A20.1 on cell proliferation, invasion, cell cycle and apoptosis were evaluated using in vitro assays. The potential changes in protein expression were investigated using western blot analysis. The methylation status of the CpG island in the NFIA promoter was determined using bisulfite PCR (BSP) sequencing. It was found that the expression of RP5­833A20.1 was downregulated, whereas the expression of NFIA was upregulated in glioma tissues, compared with corresponding adjacent nontumor tissues from 20 patients with glioma. The overexpression of RP5­833A20.1 inhibited proliferation and cell cycle progression, and induced apoptosis in the U251 cells. The mRNA and protein levels of NFIA were markedly inhibited by overexpression of RP5­833A20.1 in the U251 cells. The overexpression of RP5­833A20.1 increased the expression of microRNA­382­5p in the U251 cells. The BSP assay revealed that the overexpression of RP5­833A20.1 enhanced the methylation level of the NFIA promoter. These results demonstrated that RP5­833A20.1 inhibited tumor cell proliferation, induced apoptosis and inhibited cell­cycle progression by suppressing the expression of NFIA in U251 cells. Collectively, these results indicated RP5­833A20.1 as a novel therapeutic target for glioma.


Assuntos
Ciclo Celular/genética , Fatores de Transcrição NFI/genética , Interferência de RNA , RNA Longo não Codificante/genética , Adulto , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Metilação de DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Humanos , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , RNA Interferente Pequeno/genética
10.
J Lipid Res ; 57(8): 1398-411, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27281478

RESUMO

Accumulated evidence shows that vanin-1 (VNN1) plays a key part in glucose metabolism. We explored the effect of VNN1 on cholesterol metabolism, inflammation, apoptosis in vitro, and progression of atherosclerotic plaques in apoE(-/-) mice. Oxidized LDL (Ox-LDL) significantly induced VNN1 expression through an ERK1/2/cyclooxygenase-2/PPARα signaling pathway. VNN1 significantly increased cellular cholesterol content and decreased apoAI and HDL-cholesterol (HDL-C)-mediated efflux by 25.16% and 23.13%, respectively, in THP-1 macrophage-derived foam cells (P < 0.05). In addition, VNN1 attenuated Ox-LDL-induced apoptosis through upregulation of expression of p53 by 59.15% and downregulation of expression of B-cell lymphoma-2 127.13% in THP-1 macrophage (P < 0.05). In vivo, apoE(-/-) mice were divided randomly into two groups and transduced with lentivirus (LV)-Mock or LV-VNN1 for 12 weeks. VNN1-treated mice showed increased liver lipid content and plasma levels of TG (124.48%), LDL-cholesterol (119.64%), TNF-α (148.74%), interleukin (IL)-1ß (131.81%), and IL-6 (156.51%), whereas plasma levels of HDL-C (25.75%) were decreased significantly (P < 0.05). Consistent with these data, development of atherosclerotic lesions was increased significantly upon infection of apoE(-/-) mice with LV-VNN1. These observations suggest that VNN1 may be a promising therapeutic candidate against atherosclerosis.


Assuntos
Amidoidrolases/fisiologia , Aterosclerose/enzimologia , Dieta Hiperlipídica/efeitos adversos , Animais , Apolipoproteínas E/genética , Apoptose , Aterosclerose/etiologia , Células CACO-2 , Ésteres do Colesterol/metabolismo , Proteínas Ligadas por GPI/fisiologia , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Metabolismo dos Lipídeos , Lipoproteínas LDL/fisiologia , Fígado/metabolismo , Receptores X do Fígado/metabolismo , Macrófagos/enzimologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR gama/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo
11.
Arch Biochem Biophys ; 604: 27-35, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27267730

RESUMO

BACKGROUND: Atherosclerosis is a chronic inflammatory disease and represents the leading cause of morbidity and mortality throughout the world. Accumulating evidences have showed that Dihydrocapsaicin (DHC) has been found to exert multiple pharmacological and physiological effects. Nevertheless, the effects and possible mechanism of DHC on proinflammatory response remain largely unexplained. METHODS AND RESULTS: We found that DHC markedly upregulated NFIA and suppressed NF-κB expression in THP-1 macrophages. Up-regulation of proinflammatory cytokines induced by LPS including TNF-α, IL-1ß and IL-6 were markedly suppressed by DHC treatment. We also observed that protein level of NFIA was significantly increased while NF-κB and proinflammatory cytokines were decreased by DHC treatment in apoE(-/-) mice. Lentivirus-mediated overexpression of NFIA suppressed NF-κB and proinflammatory cytokines expression both in THP-1 macrophages and plaque tissues of apoE-/- mice. Moreover, treatment with lentivirus-mediated overexpression of NFIA made the down-regulation of DHC on NF-κB and proinflammatory cytokines expression notably accentuated in THP-1 macrophages and apoE(-/-) mice. In addition, treatment with siRNA targeting NF-κB accentuated the suppression of proinflammatory cytokines by lentivirus-mediated overexpression of NFIA. CONCLUSION: These observations demonstrated that DHC can significantly decrease proinflammatory cytokines through enhancing NFIA and inhibiting NF-κB expression and thus DHC may be a promising candidate as an anti-inflammatory drug for atherosclerosis as well as other disorders.


Assuntos
Capsaicina/análogos & derivados , Citocinas/metabolismo , Regulação da Expressão Gênica , NF-kappa B/metabolismo , Fatores de Transcrição NFI/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Anti-Inflamatórios/química , Apolipoproteínas E/genética , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Capsaicina/química , Perfilação da Expressão Gênica , Humanos , Inflamação , Interleucina-6/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/citologia , RNA Interferente Pequeno/metabolismo
12.
J Immunol ; 197(1): 141-50, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27233961

RESUMO

Thymic epithelial cells (TECs) play important roles in T cell generation. Mechanisms that control TEC development and function are still not well defined. The mammalian or mechanistic target of rapamycin complex (mTORC)2 signals to regulate cell survival, nutrient uptake, and metabolism. We report in the present study that mice with TEC-specific ablation of Rictor, a critical and unique adaptor molecule in mTORC2, display thymic atrophy, which accompanies decreased TEC numbers in the medulla. Moreover, generation of multiple T cell lineages, including conventional TCRαß T cells, regulatory T cells, invariant NKT cells, and TCRγδ T cells, was reduced in TEC-specific Rictor-deficient mice. Our data demonstrate that mTORC2 in TECs is important for normal thymopoiesis and efficient T cell generation.


Assuntos
Células Epiteliais/fisiologia , Células Matadoras Naturais/imunologia , Subpopulações de Linfócitos/imunologia , Linfopoese , Complexos Multiproteicos/metabolismo , Linfócitos T/imunologia , Serina-Treonina Quinases TOR/metabolismo , Timo/fisiologia , Animais , Proteínas de Transporte/genética , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multiproteicos/genética , Proteína Companheira de mTOR Insensível à Rapamicina , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Serina-Treonina Quinases TOR/genética
13.
PLoS One ; 11(3): e0152641, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27022746

RESUMO

Promiscuous expression of tissue restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs) is crucial for negative selection of self-reactive T cells to establish central tolerance. Intercellular transfer of self-peptide-MHC complexes from mTECs to thymic dendritic cells (DCs) allows DCs to acquire TRAs, which in turn contributes to negative selection and regulatory T cell generation. However, mTECs are unlikely to express all TRAs, such as immunoglobulins generated only in B cells after somatic recombination, hyper-mutation, or class-switches. We report here that both mTECs and cortical TECs can efficiently acquire not only cell surface but also intracellular proteins from thymocytes. This reveals a previously unappreciated intercellular sharing of molecules from thymocytes to TECs, which may broaden the TRA inventory in mTECs for establishing a full spectrum of central tolerance.


Assuntos
Células Epiteliais/metabolismo , Espaço Extracelular/metabolismo , Proteínas/metabolismo , Timócitos/metabolismo , Timo/citologia , Animais , Hematopoese , Proteínas Luminescentes/metabolismo , Complexo Principal de Histocompatibilidade , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/metabolismo
14.
Int J Clin Exp Pathol ; 8(6): 6708-15, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26261553

RESUMO

Adenosine triphosphate-binding cassette transporter A1 (ABCA1) is a crucial cholesterol transporter and plays a central role in the high density lipoproteins (HDL) cholesterol metabolism and lipid clearance from the foam cell. Lipoxin A4 (LXA4) is an endogenous lipid mediator that requires cell-cell interaction or cell-platelet interaction for its synthesis. The roles of LXA4 on inflammatory responses are well described, while its effects on mediating ABCA1 and underlying mechanisms remain unclear. In this study, we showed that LXA4 significantly increases expression of ABCA1 and LXRα in a dose-dependent manner in THP-1 macrophage-derived foam cells. Cellular cholesterol content was decreased while cholesterol efflux was increased by LXA4 treatment. However, after short interfering RNA of LXRα, the effects of LXA4 on ABCA1 expression and cholesterol metabolism were significantly abolished. These results provide evidence that LXA4 increases ABCA1 expression and promotes cholesterol efflux through LXRα pathway in THP-1 macrophage-derived foam cells.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Colesterol/metabolismo , Células Espumosas/efeitos dos fármacos , Lipoxinas/farmacologia , Receptores Nucleares Órfãos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Células Espumosas/metabolismo , Humanos , Receptores X do Fígado , Receptores Nucleares Órfãos/genética , Interferência de RNA , Transfecção , Regulação para Cima
15.
Apoptosis ; 20(10): 1321-37, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26201458

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with an increasing incidence worldwide. Apolipoprotein M (apoM) is a novel apolipoprotein that is mainly expressed in liver and kidney tissues. However, the anti-tumor properties of apoM remain largely unknown. We evaluated the anti-tumor activities and mechanisms of apoM in HCC both in vivo and in vitro. Bioinformatic analysis and luciferase reporter assay results showed that apoM was a potential target of hsa-miR-573 and was downregulated after transfection with hsa-miR-573 mimics. Overexpression of apoM suppressed migration, invasion, and proliferation of hepatoma cells in vitro. Overexpression of hsa-miR-573 in hepatoma cells reduced apoM expression, leading to promotion of the invasion, migration, and proliferation of hepatoma cells in vitro. In addition, hsa-miR-573 markedly promoted growth of xenograft tumors in nude mice with an accompanying reduction in cell apoptosis. ApoM markedly inhibited growth of xenograft tumors in nude mice and promoted cell apoptosis. Moreover, Bcl2A1 mRNA and protein levels were inhibited by apoM overexpression and an increase in apoptosis rate by apoM was markedly compensated by Bcl2A1 overexpression in HepG2 cells. These results provide evidence that hsa-miR-573 promoted tumor growth by inhibition of hepatocyte apoptosis and this pro-tumor effect might be mediated through Bcl2A1 in an apoM-dependent manner. Therefore, our findings may be useful to improve understanding of the critical effects of hsa-miR-573 and apoM in HCC pathogenesis.


Assuntos
Apoptose , Carcinogênese/metabolismo , Hepatócitos/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais , Regiões 3' não Traduzidas , Animais , Apolipoproteínas/metabolismo , Apolipoproteínas M , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Hepatócitos/patologia , Xenoenxertos , Humanos , Lipocalinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Antígenos de Histocompatibilidade Menor , Invasividade Neoplásica , Transplante de Neoplasias , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
16.
Inflammation ; 38(6): 2116-23, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26063187

RESUMO

Interleukin 6 (IL-6) is a pro-inflammatory cytokine that is well established as a vital factor in determining the risk of coronary heart disease and pathogenesis of atherosclerosis. Moreover, accumulating evidences have shown that oxidized low-density lipoprotein (ox-LDL) can promote IL-6 expression in macrophages. Nevertheless, the underlying mechanism of how ox-LDL upregulates IL-6 expression remains largely unexplained. We found that the expression of insulin-like growth factor 2 (IGF2), nuclear factor kappa B (NF-κB), and IL-6 was upregulated at both the messenger RNA (mRNA) and protein levels in a dose-dependent manner when treated with 0, 25, 50, or 100 µg/mL of ox-LDL for 48 h in THP-1 macrophages. Moreover, overexpression of IGF2 significantly upregulated NF-κB and IL-6 expressions in THP-1 macrophages. However, the upregulation of NF-κB and IL-6 expressions induced by ox-LDL were significantly abolished by IGF2 small interfering RNA (siRNA) in THP-1 macrophages. Further studies indicated the upregulation of IL-6 induced by ox-LDL could be abolished when treated with NF-κB siRNA in THP-1 macrophages. Ox-LDL might upregulate IL-6 in the cell and its secretion via enhancing NF-κB in an IGF2-dependent manner in THP-1 macrophages.


Assuntos
Fator de Crescimento Insulin-Like II/metabolismo , Interleucina-6/metabolismo , Lipoproteínas LDL/farmacologia , Macrófagos/efeitos dos fármacos , NF-kappa B/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Fator de Crescimento Insulin-Like II/genética , Interleucina-6/genética , Macrófagos/metabolismo , NF-kappa B/genética , Interferência de RNA , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transfecção , Regulação para Cima
17.
Arterioscler Thromb Vasc Biol ; 35(1): 87-101, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25265644

RESUMO

OBJECTIVE: Cardiovascular disease caused by atherosclerosis is the number one cause of death in Western countries and threatens to become the major cause of morbidity and mortality worldwide. Long noncoding RNAs are emerging as new players in gene regulation, but how long noncoding RNAs operate in the development of atherosclerosis remains unclear. APPROACH AND RESULTS: Using microarray analysis, we found that long noncoding RNA RP5-833A20.1 expression was upregulated, whereas nuclear factor IA (NFIA) expression was downregulated in human acute monocytic leukemia macrophage-derived foam cells. Moreover, we showed that long noncoding RNA RP5-833A20.1 may decreases NFIA expression by inducing hsa-miR-382-5p expression in vitro. We found that the RP5-833A20.1/hsa-miR-382-5p/NFIA pathway is essential to the regulation of cholesterol homeostasis and inflammatory responses in human acute monocytic leukemia macrophages. Lentivirus-mediated NFIA overexpression increased high-density lipoprotein cholesterol circulation, reduced low-density lipoprotein cholesterol, and very-low-density lipoprotein cholesterol circulation, decreased circulation of inflammatory cytokines, including interleukin-1ß, interleukin-6, tumor necrosis factor-α, and C-reactive protein, enhanced reverse cholesterol transport, and promoted regression of atherosclerosis in apolipoprotein E-deficient mice. CONCLUSIONS: Our findings indicated that the RP5-833A20.1/miR-382-5p/NFIA pathway was essential to the regulation of cholesterol homeostasis and inflammatory reactions and suggested that NFIA may represent a therapeutic target to ameliorate cardiovascular disease.


Assuntos
Aterosclerose/metabolismo , Colesterol/metabolismo , Células Espumosas/metabolismo , Inflamação/imunologia , MicroRNAs/metabolismo , Fatores de Transcrição NFI/metabolismo , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/imunologia , Aterosclerose/prevenção & controle , Células CACO-2 , Colesterol/sangue , Citocinas/sangue , Modelos Animais de Doenças , Células Espumosas/imunologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Técnicas de Transferência de Genes , Vetores Genéticos , Células Hep G2 , Homeostase , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/prevenção & controle , Mediadores da Inflamação/sangue , Lentivirus/genética , Lipoproteínas LDL/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Fatores de Transcrição NFI/genética , Análise de Sequência com Séries de Oligonucleotídeos , RNA Longo não Codificante/genética , Receptor Tipo 1 de Angiotensina , Fatores de Tempo , Transfecção
18.
PLoS One ; 9(4): e94997, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24733347

RESUMO

AIMS: ATP-binding cassette transporter A1 (ABCA1) mediates the efflux of cholesterol and phospholipids to lipid-poor apolipoproteins, which then form nascent HDL, a key step in the mechanism of reverse cholesterol transport (RCT). While a series of microRNAs (miRNAs) have been identified as potent post-transcriptional regulators of lipid metabolism, their effects on ABCA1 function and associated mechanisms remain unclear. METHODS AND RESULTS: ABCA1 was identified as a potential target of miR-144-3p, based on the results of bioinformatic analysis and the luciferase reporter assay, and downregulated after transfection of cells with miR-144-3p mimics, as observed with real-time PCR and western blot. Moreover, miR-144-3p mimics (agomir) enhanced the expression of inflammatory factors, including IL-1ß, IL-6 and TNF-α, in vivo and in vitro, inhibited cholesterol efflux in THP-1 macrophage-derived foam cells, decreased HDL-C circulation and impaired RCT in vivo, resulting in accelerated pathological progression of atherosclerosis in apoE-/- mice. Clinical studies additionally revealed a positive correlation of circulating miR-144-3p with serum CK, CK-MB, LDH and AST in subjects with AMI. CONCLUSIONS: Our findings clearly indicate that miR-144-3p is essential for the regulation of cholesterol homeostasis and inflammatory reactions, supporting its utility as a potential therapeutic target of atherosclerosis and a promising diagnostic biomarker of AMI.


Assuntos
Colesterol/metabolismo , Citocinas/biossíntese , Mediadores da Inflamação/metabolismo , MicroRNAs/agonistas , Placa Aterosclerótica/patologia , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Adulto , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Transporte Biológico , Linhagem Celular , Citocinas/sangue , Feminino , Homeostase , Humanos , Inflamação/patologia , Metabolismo dos Lipídeos , Lipoproteínas/sangue , Fígado/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/sangue , Pessoa de Meia-Idade , Infarto do Miocárdio/sangue , Infarto do Miocárdio/genética , Placa Aterosclerótica/sangue , Placa Aterosclerótica/genética
19.
Arch Biochem Biophys ; 533(1-2): 1-10, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23500137

RESUMO

Propofol (2,6-diisopropylphenol) is probably the most widely used intravenous hypnotic agent in daily practice. However, its anti-inflammatory properties have seldom been addressed. In this study, we evaluated the anti-inflammatory activity and mechanisms of propofol on lipopolysaccharide (LPS)-induced inflammation in vivo and in vitro and found that propofol markedly inhibited LPS-induced production of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6, and expression of inducible nitric oxide synthase (iNOS). At the same time, the expression of hepatocyte nuclear factor-1α (HNF-1α) and apolipoprotein M (APOM) was inhibited by treatment with LPS and LPS-induced down-regulation of HNF-1α expression and APOM expression could be compensated by propofol treatment. However, propofol could not compensate LPS-induced down-regulation of APOM expression by treatment with HNF-1α siRNA and the suppressive effect on LPS-induced pro-inflammatory cytokines production by propofol was significantly compensated by treatment with APOM siRNA. These results provide evidence that propofol may first up-regulate APOM expression by enhancing HNF-1α expression and then inhibit pro-inflammatory cytokine production in LPS-stimulated cells. Therefore, our study may be useful in understanding the critical effect of propofol in patients with systemic inflammatory response syndrome.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Apolipoproteínas/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Lipocalinas/metabolismo , Fatores de Transcrição NFI/metabolismo , Propofol/farmacologia , Animais , Apolipoproteínas M , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
20.
Oncol Lett ; 3(5): 1115-1118, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22783402

RESUMO

Mouse double minute 4 (MDM4) is a critical negative regulator of the tumor suppressor p53. The results of studies have revealed that an MDM4 polymorphism (rs1563828) may contribute to the earlier onset of several malignant diseases. However, the correlation between this polymorphism and nasopharyngeal carcinoma (NPC) susceptibility has not been explored. We performed a case-control study with 210 NPC patients and 200 healthy controls. Significant associations were found when comparing the age of onset of NPC according to the rs1563828 genotype (P=0.01). The average age of onset of NPC in patients with the TT, CC and CT genotypes was 39.3, 48.2 and 45.5 years, respectively. Homozygous variant (TT) carriers developed NPC at an earlier age than homozygous (CC) carriers, such that the age of onset was accelerated by 8.9 years (P=0.002). Our data suggest that rs1563828 is a modifier of the age of onset of NPC in the population studied. The age of onset for NPC with TT homozygotes was earlier than CC carriers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA