Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937576

RESUMO

Reperfusion injury, which is distinct from ischaemic injury, occurs when blood flow is restored in previously ischaemic brain tissue, further compromising neurons and other cells and worsening the injury. There is currently a lack of pharmaceutical agents and therapeutic interventions that specifically mitigate cerebral ischaemia/reperfusion (I/R) injury. Ginsenoside Rg1 (Rg1), a protopanaxatriol-type saponin isolated from Panax ginseng C. A. Meyer, has been found to protect against cerebral I/R injury, but its intricate protective mechanisms remain to be elucidated. Numerous studies have shown that autophagy plays a crucial role in protecting brain tissue during the I/R process and is emerging as a promising therapeutic strategy for effective treatment. In this study, we investigated whether Rg1 protected against I/R damage in vitro and in vivo by regulating autophagy. Both MCAO and OGD/R models were established. SK-N-AS and SH-SY5Y cells were subjected to OGD followed by reperfusion with Rg1 (4-32 µM). MCAO mice were injected with Rg1 (30 mg·kg-1·d-1. i.p.) for 3 days before and on the day of surgery. Rg1 treatment significantly mitigated ischaemia/reperfusion injury both in vitro and in vivo. Furthermore, we demonstrated that the induction of autophagy contributed to I/R injury, which was effectively inhibited by Rg1 in both in vitro and in vivo models of cerebral I/R injury. Rg1 inhibited autophagy through multiple steps, including impeding autophagy initiation, inducing lysosomal dysfunction and inhibiting cathepsin enzyme activities. We revealed that mTOR activation was pivotal in mediating the inhibitory effect of Rg1 on autophagy. Treatment with Torin-1, an autophagy inducer and mTOR-specific inhibitor, significantly reversed the impact of Rg1 on autophagy, decreasing its protective efficacy against I/R injury both in vitro and in vivo. In conclusion, our results suggest that Rg1 may serve as a promising drug candidate against cerebral I/R injury by inhibiting autophagy through activation of mTOR signalling.

2.
Anal Chem ; 96(2): 756-765, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38170958

RESUMO

In situ monitoring of the actions of correlated enzymes in living cells is crucial for expanding our understanding of disease progression and evaluating drug efficacy. However, due to the diverse functions of different enzymes, currently available methods for comprehensive analysis of these events are limited. Here, we present an in situ track-generated DNA walker for AND-gate logic imaging of telomerase (TE) and flap endonuclease 1 (FEN1) activities in live cells. TE is in charge of generating the tracks for the walking strands by extending the TE primer on a gold nanoparticle, while FEN1 is responsible for recognizing the overlapping structure formed by the walking strands and the tracks and then cleaving the fluorescent reporter to produce signals. By utilizing the DNA walker, we successfully determined the expression levels and activities of TE and FEN1 in various cancer cell lines, offering promising prospects for screening inhibitors and investigating the biomolecular mechanisms of diseases.


Assuntos
Nanopartículas Metálicas , Telomerase , Endonucleases Flap/genética , Telomerase/metabolismo , Ouro/química , Nanopartículas Metálicas/química , DNA/química
3.
Mol Med ; 28(1): 80, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842576

RESUMO

BACKGROUND: Liver fibrosis is a progressive liver injury response. Transforming growth factor ß1 (TGF-ß1) is oversecreted during liver fibrosis and promotes the development of liver fibrosis. Therapeutic approaches targeting TGF-ß1 and its downstream pathways are essential to inhibit liver fibrosis. The N-terminal latency-associated peptide (LAP) blocks the binding of TGF-ß1 to its receptor. Removal of LAP is critical for the activation of TGF-ß1. Therefore, inhibition of TGF-ß1 and its downstream pathways by LAP may be a potential approach to affect liver fibrosis. METHODS: Truncated LAP (tLAP) plasmids were constructed. Recombinant proteins were purified by Ni affinity chromatography. The effects of LAP and tLAP on liver fibrosis were investigated in TGF-ß1-induced HSC-T6 cells, AML12 cells and CCl4-induced liver fibrosis mice by real time cellular analysis (RTCA), western blot, real-time quantitative PCR (RT-qPCR), immunofluorescence and pathological staining. RESULTS: LAP and tLAP could inhibit TGF-ß1-induced AML12 cells inflammation, apoptosis and EMT, and could inhibit TGF-ß1-induced HSC-T6 cells proliferation and fibrosis. LAP and tLAP could attenuate the pathological changes of liver fibrosis and inhibit the expression of fibrosis-related proteins and mRNAs in CCl4-induced liver fibrosis mice. CONCLUSION: LAP and tLAP could alleviate liver fibrosis in vitro and in vivo via inhibition of TGF-ß/Smad pathway. TLAP has higher expression level and more effective anti-fibrosis activity compared to LAP. This study may provide new ideas for the treatment of liver fibrosis.


Assuntos
Fator de Crescimento Transformador beta1 , Fator de Crescimento Transformador beta , Animais , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Camundongos , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
4.
Molecules ; 26(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203392

RESUMO

With the increasing global demand for edible oils and the restriction of arable land minimum in China, woody oil plants have gradually become the optimal solution to cover the shortage of current edible oil supply and to further improve the self-sufficiency rate. However, due to the lack of knowledge and technique, problems like "how to make full use of these plant resources?" and "how to guide consumers with reasonable data?" limit the development of woody oilseed industry towards a sustainable circular economy. In this review, several emerging unique woody oil plants in China were introduced, among which Litsea cubeba as a new woody oil plant was highlighted as a reference case based on its current research progress. Unlike other woody oil plants, essential oil rather than oil from Litsea cubeba has always been the main product through the years due to its interesting biological activities. Most importantly, its major component, citral, could be the base for other synthesized perfume compounds with added value. Moreover, the sustainable biorefinery of large amounts of waste residual after Litsea cubeba essential oil processing is now technically feasible, which could inspire a total valorization pathway for other woody oil plants to make more competitive plant-based products with both economic, social, and ecological benefits.


Assuntos
Litsea/crescimento & desenvolvimento , Óleos Voláteis/química , Óleos de Plantas/química , China , Litsea/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA