Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nat Commun ; 15(1): 4667, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821952

RESUMO

Checkpoint kinase 1 (CHK1) is critical for cell survival under replication stress (RS). CHK1 inhibitors (CHK1i's) in combination with chemotherapy have shown promising results in preclinical studies but have displayed minimal efficacy with substantial toxicity in clinical trials. To explore combinatorial strategies that can overcome these limitations, we perform an unbiased high-throughput screen in a non-small cell lung cancer (NSCLC) cell line and identify thioredoxin1 (Trx1), a major component of the mammalian antioxidant-system, as a determinant of CHK1i sensitivity. We establish a role for redox recycling of RRM1, the larger subunit of ribonucleotide reductase (RNR), and a depletion of the deoxynucleotide pool in this Trx1-mediated CHK1i sensitivity. Further, the TrxR inhibitor auranofin, an approved anti-rheumatoid arthritis drug, shows a synergistic interaction with CHK1i via interruption of the deoxynucleotide pool. Together, we show a pharmacological combination to treat NSCLC that relies on a redox regulatory link between the Trx system and mammalian RNR activity.


Assuntos
Auranofina , Carcinoma Pulmonar de Células não Pequenas , Quinase 1 do Ponto de Checagem , Neoplasias Pulmonares , Oxirredução , Tiorredoxinas , Quinase 1 do Ponto de Checagem/metabolismo , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Humanos , Oxirredução/efeitos dos fármacos , Tiorredoxinas/metabolismo , Linhagem Celular Tumoral , Auranofina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/farmacologia , Ribonucleosídeo Difosfato Redutase/metabolismo , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleotídeo Redutases/metabolismo , Ribonucleotídeo Redutases/antagonistas & inibidores , Sinergismo Farmacológico , Animais
2.
Res Sq ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37205570

RESUMO

Checkpoint kinase 1 (CHK1) is critical for cell survival under replication stress (RS). CHK1 inhibitors (CHK1i's) in combination with chemotherapy have shown promising results in preclinical studies but minimal efficacy with substantial toxicity in clinical trials. To explore novel combinational strategies that can overcome these limitations, we performed an unbiased high-throughput screen in a non-small cell lung cancer (NSCLC) cell line and identified thioredoxin1 (Trx1), a major component of the mammalian antioxidant-system, as a novel determinant of CHK1i sensitivity. We established a role for redox recycling of RRM1, the larger subunit of ribonucleotide reductase (RNR), and a depletion of the deoxynucleotide pool in this Trx1-mediated CHK1i sensitivity. Further, the TrxR1 inhibitor auronafin, an anti-rheumatoid arthritis drug, shows a synergistic interaction with CHK1i via interruption of the deoxynucleotide pool. Together, these findings identify a new pharmacological combination to treat NSCLC that relies on a redox regulatory link between the Trx system and mammalian RNR activity.

3.
Intensive Crit Care Nurs ; 75: 103371, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36528462

RESUMO

OBJECTIVE: To assess whether abdominal massage impacts enteral feeding tolerance in mechanically ventilated patients. METHODS: Patients were randomized to receive standard or intervention care (standard care plus a 15-minute abdominal massage twice daily) for three days. We recorded the vomiting, reflux, gastric retention, aspiration, diarrhea, abdominal distension, gastric residual volume and abdominal circumference from days one to three. A P-value of less than 0.05 was statistically significant. RESULTS: Seventy-four patients (37 per group) were recruited (intervention vs control: age 58.03 ± 10.44 vs 55.33 ± 12.45 years; %M: 69.70 % vs 69.70 %). The aspiration, gastric retention and abdominal distension incidence in the intervention group was 3.03 %, 6.06 % and 9.09 %, whereas in the control group it was 24.24 %, 30.30 % and 27.27 % (P <.05). The vomiting, reflux and diarrhea incidence for patients in the intervention group were all 3.03 %, whereas in the control group they were 3.03 %, 9.09 % and 9.09 % (P >.05). From day 1 to day 3, the gastric residual volume decreased from 87.23 ± 3.29 mL to 72.59 ± 5.40 mL in the intervention group and increased from 91.94 ± 3.45 mL to 105.00 ± 6.94 mL in the control group. Similarly, the abdominal circumference decreased from 84.41 ± 1.73 cm to 82.44 ± 1.73 cm in the intervention group and increased from 87.90 ± 1.60 cm to 88.90 ± 1.75 cm in the control group. The differences in time, group, and interaction effects between the two groups were statistically significant for abdominal circumference and gastric residual volume (P <.05). CONCLUSIONS: Abdominal massage can effectively reduce gastric retention, abdominal distension, aspiration, gastric residual volume and abdominal circumference in mechanically ventilated patients, but not the incidence of vomiting, reflux and diarrhea.


Assuntos
Nutrição Enteral , Respiração Artificial , Humanos , Pessoa de Meia-Idade , Idoso , Respiração Artificial/efeitos adversos , Nutrição Enteral/efeitos adversos , Massagem/efeitos adversos , Diarreia/prevenção & controle , Diarreia/complicações , Vômito/etiologia , Vômito/prevenção & controle
4.
Cancer Res ; 82(7): 1298-1312, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35045984

RESUMO

Over 50% of all patients with cancer are treated with radiotherapy. However, radiotherapy is often insufficient as a monotherapy and requires a nontoxic radiosensitizer. Squalene epoxidase (SQLE) controls cholesterol biosynthesis by converting squalene to 2,3-oxidosqualene. Given that SQLE is frequently overexpressed in human cancer, this study investigated the importance of SQLE in breast cancer and non-small cell lung cancer (NSCLC), two cancers often treated with radiotherapy. SQLE-positive IHC staining was observed in 68% of breast cancer and 56% of NSCLC specimens versus 15% and 25% in normal breast and lung tissue, respectively. Importantly, SQLE expression was an independent predictor of poor prognosis, and pharmacologic inhibition of SQLE enhanced breast and lung cancer cell radiosensitivity. In addition, SQLE inhibition enhanced sensitivity to PARP inhibition. Inhibition of SQLE interrupted homologous recombination by suppressing ataxia-telangiectasia mutated (ATM) activity via the translational upregulation of wild-type p53-induced phosphatase (WIP1), regardless of the p53 status. SQLE inhibition and subsequent squalene accumulation promoted this upregulation by triggering the endoplasmic reticulum (ER) stress response. Collectively, these results identify a novel tumor-specific radiosensitizer by revealing unrecognized cross-talk between squalene metabolites, ER stress, and the DNA damage response. Although SQLE inhibitors have been used as antifungal agents in the clinic, they have not yet been used as antitumor agents. Repurposing existing SQLE-inhibiting drugs may provide new cancer treatments. SIGNIFICANCE: Squalene epoxidase inhibitors are novel tumor-specific radiosensitizers that promote ER stress and suppress homologous recombination, providing a new potential therapeutic approach to enhance radiotherapy efficacy.


Assuntos
Neoplasias da Mama , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/radioterapia , Feminino , Recombinação Homóloga , Humanos , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/metabolismo
5.
Int J Radiat Oncol Biol Phys ; 112(2): 542-553, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34563636

RESUMO

PURPOSE: Cell cycle checkpoints and DNA repair are important for cell survival after exogenous DNA damage. Both rapid blockage of G2 to M phase transition in the cell cycle and the maintenance of relatively slow G2 arrest are critical to protect cells from lethal ionizing radiation (IR). Checkpoint kinase 1 is pivotal in blocking the transition from G2 to M phases in response to IR. The 14-3-3σ protein is important for IR-induced G2 arrest maintenance in which p53-dependent 14-3-3σ transcription is involved. It has been demonstrated that Ring finger protein 126 (RNF126), an E3 ligase, is required to upregulate checkpoint kinase 1 expression. Thus, our goal was to study the role of RNF126 in the G2/M phase checkpoint. METHODS AND MATERIALS: The transition from G2 to M phases and G2 accumulation in response to IR were determined by flow cytometry through staining with phospho-histone H3 (pS10) antibody and propidium iodide, respectively. The interaction of RNF126 and 14-3-3σ was determined by GST-pulldown and coimmunoprecipitation assays. The stability of RNF126 and 14-3-3σ was determined by cycloheximide-based stability assay and ubiquitination detection by coimmunoprecipitation. The sequestering of cyclin-dependent kinase 1 and cyclin B1 from the nucleus was determined by immunofluorescence staining. RESULTS: RNF126 knockdown had no impact on the IR-induced transient blockage of G2 to M but impaired IR-induced G2 arrest maintenance in cells with or without wild-type p53. Mechanistically, RNF126 binds 14-3-3σ and prevents both proteins from ubiquitination-mediated degradation. Last, RNF126 is required for enforcing the cytoplasmic sequestration of cyclin B1 and cyclin-dependent kinase 1 proteins in response to IR. CONCLUSIONS: RNF126 promotes G2 arrest via interaction with 14-3-3σ in response to IR. Our study revealed a novel role for RNF126 in promoting G2 arrest, providing a new target for cancer treatment.


Assuntos
Dano ao DNA , Pontos de Checagem da Fase M do Ciclo Celular , Pontos de Checagem do Ciclo Celular , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Radiação Ionizante
6.
Cancer Res ; 80(16): 3305-3318, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32522823

RESUMO

There is currently a lack of precise predictive biomarkers for patient selection in clinical trials of inhibitors targeting replication stress (RS) response proteins ATR and CHK1. The objective of this study was to identify novel predictive biomarkers for the response to these agents in treating non-small cell lung cancer (NSCLC). A genome-wide loss-of-function screen revealed that tumor suppressor PPP2R2A, a B regulatory subunit of protein phosphatase 2 (PP2A), determines sensitivity to CHK1 inhibition. A synthetic lethal interaction between PPP2R2A deficiency and ATR or CHK1 inhibition was observed in NSCLC in vitro and in vivo and was independent of p53 status. ATR and CHK1 inhibition resulted in significantly increased levels of RS and altered replication dynamics, particularly in PPP2R2A-deficient NSCLC cells. Mechanistically, PPP2R2A negatively regulated translation of oncogene c-Myc protein. c-Myc activity was required for PPP2R2A deficiency-induced alterations of replication initiation/RS and sensitivity to ATR/CHK1 inhibitors. We conclude that PPP2R2A deficiency elevates RS by upregulating c-Myc activity, rendering cells reliant on the ATR/CHK1 axis for survival. Our studies show a novel synthetic lethal interaction and identify PPP2R2A as a potential new predictive biomarker for patient stratification in the clinical use of ATR and CHK1 inhibitors. SIGNIFICANCE: This study reveals new approaches to specifically target PPP2R2A-deficient lung cancer cells and provides a novel biomarker that will significantly improve treatment outcome with ATR and CHK1 inhibitors.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Biomarcadores Tumorais/deficiência , Carcinoma Pulmonar de Células não Pequenas/química , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Neoplasias Pulmonares/química , Proteína Fosfatase 2/deficiência , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Replicação do DNA , Resistencia a Medicamentos Antineoplásicos , Feminino , Técnicas de Silenciamento de Genes , Genes p53 , Estudo de Associação Genômica Ampla , Xenoenxertos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Nus , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Interferente Pequeno
7.
Clin Cancer Res ; 24(7): 1629-1643, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29326282

RESUMO

Purpose: (i) To investigate the expression of the E3 ligase, RNF126, in human invasive breast cancer and its links with breast cancer outcomes; and (ii) to test the hypothesis that RNF126 determines the efficacy of inhibitors targeting the cell-cycle checkpoint kinase, CHEK1.Experimental Design: A retrospective analysis by immunohistochemistry (IHC) compared RNF126 staining in 110 invasive breast cancer and 78 paired adjacent normal tissues with clinicopathologic data. Whether RNF126 controls CHEK1 expression was determined by chromatin immunoprecipitation and a CHEK1 promoter driven luciferase reporter. Staining for these two proteins by IHC using tissue microarrays was also conducted. Cell killing/replication stress induced by CHEK1 inhibition was evaluated in cells, with or without RNF126 knockdown, by MTT/colony formation, replication stress biomarker immunostaining and DNA fiber assays.Results: RNF126 protein expression was elevated in breast cancer tissue samples. RNF126 was associated with a poor clinical outcome after multivariate analysis and was an independent predictor. RNF126 promotes CHEK1 transcript expression. Critically, a strong correlation between RNF126 and CHEK1 proteins was identified in breast cancer tissue and cell lines. The inhibition of CHEK1 induced a greater cell killing and a higher level of replication stress in breast cancer cells expressing RNF126 compared to RNF126 depleted cells.Conclusions: RNF126 protein is highly expressed in invasive breast cancer tissue. The high expression of RNF126 is an independent predictor of a poor prognosis in invasive breast cancer and is considered a potential biomarker of a cancer's responsiveness to CHEK1 inhibitors. CHEK1 inhibition targets breast cancer cells expressing higher levels of RNF126 by enhancing replication stress. Clin Cancer Res; 24(7); 1629-43. ©2018 AACR.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Quinase 1 do Ponto de Checagem/genética , Ubiquitina-Proteína Ligases/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Estudos de Coortes , Replicação do DNA/genética , Feminino , Humanos , Imuno-Histoquímica/métodos , Células MCF-7 , Prognóstico , Regiões Promotoras Genéticas/genética , Estudos Retrospectivos
8.
Radiother Oncol ; 126(3): 450-464, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29054375

RESUMO

The cell cycle checkpoint proteins ataxia-telangiectasia-mutated-and-Rad3-related kinase (ATR) and its major downstream effector checkpoint kinase 1 (CHK1) prevent the entry of cells with damaged or incompletely replicated DNA into mitosis when the cells are challenged by DNA damaging agents, such as radiation therapy (RT) or chemotherapeutic drugs, that are the major modalities to treat cancer. This regulation is particularly evident in cells with a defective G1 checkpoint, a common feature of cancer cells, due to p53 mutations. In addition, ATR and/or CHK1 suppress replication stress (RS) by inhibiting excess origin firing, particularly in cells with activated oncogenes. Those functions of ATR/CHK1 make them ideal therapeutic targets. ATR/CHK1 inhibitors have been developed and are currently used either as single agents or paired with radiotherapy or a variety of genotoxic chemotherapies in preclinical and clinical studies. Here, we review the status of the development of ATR and CHK1 inhibitors. We also discuss the potential mechanisms by which ATR and CHK1 inhibition induces cell killing in the presence or absence of exogenous DNA damaging agents, such as RT and chemotherapeutic agents. Lastly, we discuss synthetic lethality interactions between the inhibition of ATR/CHK1 and defects in other DNA damage response (DDR) pathways/genes.


Assuntos
Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Quinase 1 do Ponto de Checagem/fisiologia , Dano ao DNA , Humanos , Terapia de Alvo Molecular , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Tolerância a Radiação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA