Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(32): e202407385, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38736176

RESUMO

Circularly polarized luminescence (CPL) is promising for applications in many fields. However, most systems involving CPL are within the visible range; near-infrared (NIR) CPL-active materials, especially those that exhibit high glum values and can be controlled spatially and temporally, are rare. Herein, dynamic NIR-CPL with a glum value of 2.5×10-2 was achieved through supramolecular coassembly and energy-transfer strategies. The chiral assemblies formed by the coassembly between adenosine triphosphate (ATP) and a pyrene derivative exhibited a red CPL signal (glum of 10-3). The further introduction of sulfo-cyanine5 resulted in a energy-transfer process, which not only led to the NIR CPL but also increased the glum value to 10-2. Temporal control of these chiral assemblies was realized by introducing alkaline phosphatase to fabricate a biomimetic enzyme-catalyzed network, allowing the dynamic NIR CPL signal to be turned on. Based on these enzyme-regulated temporally controllable dynamic CPL-active chiral assemblies, a multilevel information encryption system was further developed. This study provides a pioneering example for the construction of dynamic NIR CPL materials with the ability to perform temporal control via the supramolecular assembly strategy, which is expected to aid in the design of supramolecular complex systems that more closely resemble natural biological systems.

2.
Chem Sci ; 14(25): 7076-7085, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37389256

RESUMO

AIE-active photosensitizers (PSs) are promising for antitumor therapy due to their advantages of aggregation-promoted photosensitizing properties and outstanding imaging ability. High singlet-oxygen (1O2) yield, near-infrared (NIR) emission, and organelle specificity are vital parameters to PSs for biomedical applications. Herein, three AIE-active PSs with D-π-A structures are rationally designed to realize efficient 1O2 generation, by reducing the electron-hole distribution overlap, enlarging the difference on the electron-cloud distribution at the HOMO and LUMO, and decreasing the ΔEST. The design principle has been expounded with the aid of time-dependent density functional theory (TD-DFT) calculations and the analysis of electron-hole distributions. The 1O2 quantum yields of AIE-PSs developed here can be up to 6.8 times that of the commercial photosensitizer Rose Bengal under white-light irradiation, thus among the ones with the highest 1O2 quantum yields reported so far. Moreover, the NIR AIE-PSs show mitochondria-targeting capability, low dark cytotoxicity but superb photo-cytotoxicity, and satisfactory biocompatibility. The in vivo experimental results demonstrate good antitumor efficacy for the mouse tumour model. Therefore, the present work will shed light on the development of more high-performance AIE-PSs with high PDT efficiency.

3.
Angew Chem Int Ed Engl ; 61(26): e202204605, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35442566

RESUMO

The design of artificial ion channels with high activity, selectivity and gating function is challenging. Herein, we designed the light-driven motor molecule MC2, which provides new design criteria to overcome these challenges. MC2 forms a selective K+ channel through a single molecular transmembrane mechanism, and the light-driven rotary motion significantly accelerates ion transport, which endows the irradiated motor molecule with excellent cytotoxicity and cancer cell selectivity. Mechanistic studies reveal that the rotary motion of MC2 promotes K+ efflux, generates reactive oxygen species and eventually activates caspase-3-dependent apoptosis in cancer cells. Combined with the spatiotemporally controllable advantages of light, we believe this strategy can be exploited in the structural design and application of next-generation synthetic cation transporters for the treatment of cancer and other diseases.


Assuntos
Apoptose , Neoplasias , Transporte de Íons
4.
Angew Chem Int Ed Engl ; 59(13): 5278-5283, 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32096593

RESUMO

Supramolecular polymers that can heal themselves automatically usually exhibit weakness in mechanical toughness and stretchability. Here we exploit a toughening strategy for a dynamic dry supramolecular network by introducing ionic cluster-enhanced iron-carboxylate complexes. The resulting dry supramolecular network simultaneous exhibits tough mechanical strength, high stretchability, self-healing ability, and processability at room temperature. The excellent performance of these distinct supramolecular polymers is attributed to the hierarchical existence of four types of dynamic combinations in the high-density dry network, including dynamic covalent disulfide bonds, noncovalent H-bonds, iron-carboxylate complexes and ionic clustering interactions. The extremely facile preparation method of this self-healing polymer offers prospects for high-performance low-cost material among others for coatings and wearable devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA