Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124198, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38552540

RESUMO

Polarity is a significant intracellular environmental parameter associated with cancer, while cyanide (CN-) is known to be highly toxic to humans. In this work, we designed a dual-functional fluorescent probe (TPABT) for simultaneous detection of polarity and CN-. As a polarity sensor, the probe exhibits NIR emission at 766 nm in 1,4-dioxane (non-polar solvent), whose emission intensity is 71-fold stronger than that in water (polar solvent). Meanwhile, the fluorescence intensity and quantum yield are linearly related to solvent polarity, confirming the polarity response ability of TPABT. For cell polarity detection, low cytotoxicity and polarity sensitivity of probe enable the applications for differentiating cancer cells (HeLa, 4TI) from normal cells (HUV, 3 T3) and monitoring the polarity changes of 4TI cells. As a CN- sensor, TPABT displays a turn-on fluorescence at 640 nm upon the addition of CN-, with advantages of anti-interference, response in aqueous media and low detection limit (22 nM). Additionally, we further explored the practical applications of TPABT for CN- determination in three types of real water samples (drinking water, tap water and lake water) and living cells. Notably, TPABT responses to polarity and CN- in two independent fluorescence channels of 766 and 640 nm, respectively, ensuring the dual functions for polarity and CN- sensing. Consequently, this multi-responsive fluorescent probe TPABT is promising to diagnose polarity-related diseases and detect CN- in real environments.


Assuntos
Água Potável , Corantes Fluorescentes , Tiofenos , Humanos , Cianetos/toxicidade , Espectrometria de Fluorescência , Solventes
2.
Adv Healthc Mater ; 13(16): e2304436, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38335308

RESUMO

An imbalance in reactive oxygen species (ROS) levels in tumor cells can result in the accumulation of lipid peroxide (LPO) which can induce ferroptosis. Moreover, elevated ROS levels in tumors present a chance to develop ROS-based cancer therapeutics including photodynamic therapy (PDT) and ferroptosis. However, their anticancer efficacies are compromised by insufficient oxygen levels and inherent cellular ROS regulatory mechanism. Herein, a cell membrane-targeting photosensitizer, TBzT-CNQi, which can generate 1O2, •OH, and O2 •- via type I/II process to induce a high level of LPO for potent ferroptosis and photodynamic therapy is developed. The FSP1 inhibitor (iFSP1) is incorporated with TBzT-CNQi to downregulate FSP1 expression, lower the intracellular CoQ10 content, induce a high level of LPO, and activate initial tumor immunogenic ferroptosis. In vitro and in vivo experiments demonstrate that the cell membrane-targeting type I/II PDT combination with FSP1 inhibition can evoke strong ICD and activate the immune response, which subsequently promotes the invasion of CD8+ T cells infiltration, facilitates the dendritic cell maturation, and decreases the tumor infiltration of tumor-associated macrophages. The study indicates that the combination of cell membrane-targeting type I/II PDT and FSP1 inhibition holds promise as a potential strategy for ferroptosis-enhanced photodynamic immunotherapy of hypoxia tumors.


Assuntos
Ferroptose , Fotoquimioterapia , Fármacos Fotossensibilizantes , Proteína A4 de Ligação a Cálcio da Família S100 , Ferroptose/efeitos dos fármacos , Fotoquimioterapia/métodos , Animais , Camundongos , Humanos , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Imunoterapia/métodos , Espécies Reativas de Oxigênio/metabolismo , Feminino
3.
Adv Healthc Mater ; 13(20): e2303183, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38117062

RESUMO

Due to the "Achilles' heels" of hypoxia, complicated location in solid tumor, small molecular photosensitizers with second near-infrared window (NIR-II) fluorescence, type-I photodynamic therapy (PDT), and photothermal therapy (PTT) have attracted great attention. However, these photosensitizers are still few but yet challenging. Herein, an "all in one" NIR-II acceptor-donor-acceptor fused-ring photosensitizer, Y6-Th, is presented for the in-depth diagnosis and efficient treatment of cancer. Benefiting from the strong intramolecular charge transfer, promoted highly efficient intersystem crossing, largely p-conjugated fused-ring structure, and reduced planarity, the fabricated nanoparticles (Y6-Th nanoparticles) can emit NIR-II fluorescence with the peak located at 1020 nm, exclusively generate O2•- for type-I PDT, and display excellent PTT performance under an 808 nm laser stimulation. These characteristics make Y6-Th a distinguished NIR-wavelength-triggered phototheranostic agent, which can effectively therapy the hypoxic tumor using NIR-II-fluorescence-guided type-I PDT/PTT. This work provides a valuable guideline for fabricating high-performing NIR-II emissive superoxide radical photogenerators.


Assuntos
Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Superóxidos , Fotoquimioterapia/métodos , Superóxidos/metabolismo , Superóxidos/química , Animais , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Camundongos , Humanos , Nanopartículas/química , Terapia Fototérmica/métodos , Linhagem Celular Tumoral , Raios Infravermelhos , Camundongos Endogâmicos BALB C , Feminino , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Hipóxia Tumoral/efeitos dos fármacos
4.
Int J Nanomedicine ; 18: 1245-1257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937549

RESUMO

Introduction: The high concentration of glutathione (GSH) and hydrogen peroxide (H2O2) levels within the tumor microenvironment (TME) are the major obstacle to induce the unsatisfactory anticancer treatment efficiency. The synergistic cancer therapy strategies of the combination the GSH depletion enhanced chemodynamic therapy (CDT) with photothermal therapy (PTT) have been proved to be the promising method to significantly improve the therapeutic efficacy. Methods: The copperphosphotungstate was incorporated into polyanilines to design copperphosphotungstate doped polyaniline nanorods (CuPW@PANI Nanorods) via chemical oxidant polymerization of aniline. The low long-term toxicity and biocompatibility were evaluated. Both in vitro and in vivo experiments were carried out to confirm the GSH depletion enhanced CDT/NIR-II PTT synergistic therapy. Results: CuPW@PANI Nanorods feature biosafety and biocompatibility, strong NIR-II absorbance, and high photothermal-conversion efficiency (45.14%) in NIR-II bio-window, making them highly applicable for photoacoustic imaging and NIR-II PTT. Moreover, CuPW@PANI Nanorods could consume endogenous GSH to disrupt redox homeostasis and perform a Fenton-like reaction with H2O2 to produce cytotoxic •OH for the enhanced CDT. Furthermore, NIR-II photothermal-induced local hyperthermia accelerates •OH generation to enhance CDT, which realizes high therapeutic efficacy in vivo. Conclusion: This study provides a proof of concept of GSH-depletion augmented chemodynamic/NIR-II photothermal therapy.


Assuntos
Nanopartículas , Nanotubos , Neoplasias , Humanos , Terapia Fototérmica , Peróxido de Hidrogênio/farmacologia , Compostos de Anilina/farmacologia , Glutationa , Linhagem Celular Tumoral , Microambiente Tumoral
5.
ACS Appl Mater Interfaces ; 14(22): 26088-26098, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35608957

RESUMO

Hydrogel strain sensors with extreme temperature tolerance have recently gained great attention. However, the sensing ability of these hydrogel strain sensors changes with temperature, resulting in the variety of output signals that causes signal distortion. In this study, double-network hydrogels comprising SiO2 nanoparticles composed of polyacrylamide and phytic acid-doped polypyrrole were prepared and applied on strain sensors with a wide sensing range, high adhesiveness, and invariable strain sensitivity under flame and cold environments. The hydrogels had stable conductivity, excellent adhesive strength of up to 79.7 kPa on various substrates, and high elongation of up to 1896% at subzero temperature and after heating. They also exhibited effective flame retardancy with low surface temperature (71.2 °C) after 1200 s of heating (200 °C) and antifreezing properties at a low temperature of -20 °C. Remarkably, even under cold temperature and heat treatment, the hydrogel-based strain sensor displayed consistent sensing behaviors in detecting human motions with a broad strain range (up to 500%) and steady gauge factor (GF, ∼2.90). Therefore, this work paves the way for the applications of hydrogel sensors in robotic skin, human-mechanical interfaces, and health monitoring devices under harsh operating environments.


Assuntos
Hidrogéis , Polímeros , Adesividade , Temperatura Baixa , Condutividade Elétrica , Humanos , Hidrogéis/química , Pirróis , Dióxido de Silício
6.
Carbohydr Polym ; 265: 118074, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33966838

RESUMO

A novel and eco-friendly chitosan derivative was synthesized as green corrosion inhibitors on C3003 aluminum alloy in 3.5 wt.% NaCl solution. In this paper, CP was prepared by Schiff Base reaction with chitosan and 4-pyridinecarboxaldehyde. Then, TiO2 was dispersed in CP to prepare CPT nanocomposite. The corrosion inhibition effect of CPT on C3003 aluminum alloy at different concentrations were studied with electrochemical techniques and surface analysis. The results showed that the maximum inhibition efficiency of CPT nanocomposite reaches to 94.5 % at 200 ppm after the immersed in 3.5 wt.% NaCl solution for 72 h. Meanwhile, the contact angle increases to 120° due to the formation of hydrophobic substances. The strategy of organic/inorganic hybrid can provide the inspiration for the development of chitosan corrosion inhibitor with low concentration and high efficiency.


Assuntos
Ligas/química , Alumínio/química , Quitosana/análogos & derivados , Quitosana/química , Nanocompostos/química , Cloreto de Sódio/química , Adsorção , Corrosão , Técnicas Eletroquímicas/métodos , Química Verde/métodos , Microscopia Eletrônica de Varredura/métodos , Piridinas/química , Bases de Schiff/química , Aço/química , Propriedades de Superfície , Titânio/química
7.
Talanta ; 192: 212-219, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30348380

RESUMO

Nucleus imaging is of great importance for understanding cellular processes of genetic expression, proliferation and growth, etc. Although many nucleic-acid selective dyes for nucleus staining are available, few of them meet multiple standards. Herein, we report a cationic fluorescence dye FTI that possesses visible light excitation (436 nm), orange emission (571 nm) and a large Stokes shift (~135 nm) for nucleic-acid staining. FTI displays an obvious and sensitive fluorescent response to DNA in vitro with a 6.4-fold quantum yield increasing. Co-staining and nucleic acid digest experiments in live cells demonstrate that FTI exhibits an unexpected selectivity for the nucleolus of the cells due to the stronger affinity to RNA than DNA. Because of good photostability and low cytotoxicity, FTI can accomplish a promising stain for DNA recognition in vitro and nucleolus-specific imaging in cancer cells.


Assuntos
Nucléolo Celular/metabolismo , DNA/metabolismo , Fluorenos/química , Corantes Fluorescentes/química , Compostos de Piridínio/química , Estabilidade de Medicamentos , Fluorenos/síntese química , Fluorenos/efeitos da radiação , Fluorenos/toxicidade , Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/efeitos da radiação , Corantes Fluorescentes/toxicidade , Células Hep G2 , Humanos , Substâncias Intercalantes/síntese química , Substâncias Intercalantes/química , Substâncias Intercalantes/efeitos da radiação , Substâncias Intercalantes/toxicidade , Luz , Microscopia Confocal , Microscopia de Fluorescência , Compostos de Piridínio/síntese química , Compostos de Piridínio/efeitos da radiação , Compostos de Piridínio/toxicidade
8.
ACS Appl Mater Interfaces ; 10(20): 17081-17088, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29717866

RESUMO

Effective long-term monitoring of tumor growth is significant for the evaluation of cancer therapy. Aggregation-induced emission-active near-infrared (NIR) fluorescent organic nanoparticles (TPFE-Rho dots) are designed and synthesized for long-term in vitro cell tracking and in vivo monitoring of tumor growth. TPFE-Rho dots display the advantages of NIR fluorescent emission, large Stokes shift (∼180 nm), good biocompatibility, and high photostability. In vitro cell tracing studies demonstrate that TPFE-Rho dots can track SK-Hep-1 cells over 11 generations. In vivo optical imaging results confirm that TPFE-Rho dots can monitor tumor growth for more than 19 days in a real-time manner. This work indicates that TPFE-Rho dots could act as NIR fluorescent nanoprobes for real-time long-term in situ in vivo monitoring of tumor growth.


Assuntos
Nanopartículas , Rastreamento de Células , Corantes Fluorescentes , Humanos , Neoplasias , Imagem Óptica
9.
J Microencapsul ; 35(3): 219-228, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29630422

RESUMO

There is lack of understanding on controlling of mechanical properties of moisture-curing PU/MF microcapsules which limited its further application. PU/MF microcapsules containing a core of isophorone diisocyanate (IPDI) were prepared with different chain extenders, polyetheramine D400, H2O, triethylenetetramine and polyetheramine (PEA) D230 by following a two-step synthesis method in this study. Fourier transform infra-red (FTIR) spectroscopy, Malvern particle sizing, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). And micromanipulation technique was used to identify chemical bonds in the shell, size distributions, structure, thickness, and mechanical properties of microcapsules. The results show that PU/MF microcapsules were successfully prepared. Tr increased from 46.4 ± 13.9 N/m to 75.8 ± 23.3 N/m when extender changed from D400 to D230. And the Tr increased from 51.3 ± 14.1 to 94.8 ± 17.5 N/m when the swelling time increased from 1 to 3h. Morphologies of the shell were utilised to understand the mechanism of reactions in forming the shell materials.


Assuntos
Composição de Medicamentos/métodos , Poliaminas/química , Polímeros/química , Triazinas/química , Cápsulas/química , Tamanho da Partícula , Trientina/química , Água/química
10.
J Mater Chem B ; 6(15): 2340-2346, 2018 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32254573

RESUMO

Real-time and long-term nucleus labeling is of great significance for understanding and elucidating cellular and molecular processes in the life sciences, such as gene expression, replication, recombination, and repair, but remains challenging because of the lack of ideal imaging probes. Traditional commercial DNA stains for live-cell imaging either suffer from low water solubility, high cytotoxicity and photobleaching or have small Stokes shifts and low ultraviolet (UV) light excitation; these intrinsic drawbacks limit their utility. Here, a far-red DNA stain (PTB) is explored for in vitro long-term nucleus tracking and in vivo tumor growth monitoring. PTB exhibits a large Stokes shift (∼110 nm), far-red emission (625 nm), and a 73.8-fold increase in fluorescence upon binding with DNA. Compared to currently used nucleus stains, PTB also displays low cytotoxicity and good photostability and biocompatibility. More importantly, the results of in vitro studies reveal that PTB can be tracked in stained HepG-2 cancer cells for up to 11 generations. Moreover, PTB demonstrates effective long-term (i.e., 21 days) tumor growth imaging in vivo. The combination of these remarkable properties makes PTB a promising far-red DNA stain.

11.
J Mater Chem B ; 5(46): 9183-9188, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-32264600

RESUMO

Fluorophores for efficient long-term bioimaging are of great importance to fully understand the cellular and molecular processes of disease. In this study, a bright and photostable cationic fluorophore (PPB) was successfully developed as a long-term tracer. The PPB displayed advanced properties such as high fluorescence efficiency, large Stokes shift, low cytotoxicity, and good biocompatibility. Moreover, the PPB exhibited comparable photostability to the commercial cell tracker Qtracker 585. More importantly, the PPB can trace HeLa cells as long as 16 passages in vitro and monitor tumor growth for 27 days in vivo. These remarkable features endow the PPB as an ideal fluorescent probe for long-term bioimaging applications.

12.
J Microencapsul ; 33(4): 307-14, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27145990

RESUMO

Moisture curing type self-healing microcapsules become more attractive, while instability of active core material crippled the efficiency of self-healing behaviour. Polyurea (PU)/melamine formaldehyde (MF) double-layered self-healing microcapsules containing isophorone diisocyanate (IPDI) core with high and stable core fraction were prepared. The structure, morphology, particle size and distribution were studied with Fourier transform infra-red spectroscopy, optical microscopy, scanning electron microscopy and Mastersizer 3000. The influences of process conditions were investigated to uncover the principle of core fraction and morphology of microcapsules. The core fraction of microcapsules was reduced with the increase of ageing time, and microcapsules prepared with ice-bath, polyetheramine (PEA) and prepolymer of melamine formaldehyde (P-MF) had higher core fraction and better morphology. PEA D230 and 1500 rpm agitation rate were chosen according to optimised trade-offs in the core fraction and morphology of the microcapsules.


Assuntos
Polímeros/química , Triazinas/química , Cápsulas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA